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a b s t r a c t

It is well known that accurate frequency estimation of multi-frequency signals con-
taminated with additive noise is a common problem encountered in a large number of
engineering practice scenarios. This paper proposes a new frequency estimator based on
using zero-padding and main-lobe fitting techniques. The primary innovation of this new
algorithm is that it can be applied to most classic window functions, including adjustable
windows. Systematic errors for various windows are studied and algorithm stability with
respect to white Gaussian noise is investigated. In addition, a comparative study demon-
strates that the proposed algorithm is more robust against additive noise than traditional
algorithms because of its insensitivity to the incorrect polarity estimation and an intrinsic
ability for partially canceling noise influence. Featured with straightforward operation,
sufficient accuracy, strong compatibility, as well as robustness towards additive noise, the
proposed approach is an appropriate choice for frequency estimation in spectral analysis.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate parameters estimation (frequency, amplitude and phase) for sinusoids contaminated with random noise has
been a subject of investigation in various fields for several decades. For example, a common problem encountered in
vibration analysis for rotating machinery is parameter estimation of a sampled multi-frequency signals in the presence of
additive noise [1]. Typically, signs of probable error occur if a new peak value emerges in the spectrum or the root-mean-
square value of the vibration at an integer multiple of the fundamental frequency changes [1]. With the increasing appli-
cation of non-linear devices and periodical time-variable loads in electrical power systems, distortion of current and voltage
waveforms becomes a serious problem. Therefore, real-time analysis and control of electrical power harmonics is of great
significance for maintaining electrical energy quality, preventing damage to electrical network systems, and saving energy
[2,3]. Besides, a number of audio coding technologies have been recently developed, where the audio signal is decomposed
into sinusoids and noise before coding. The decomposition, of course, depends on the accurate frequency estimation of the
audio signal [4]. Prior literature introduced various estimation approaches which can be generally classified into the
categories time domain and frequency domain. Given their straightforward operation and high efficiency, frequency domain
approaches based on the discrete Fourier transform (DFT) and implemented by the fast Fourier transform (FFT) are often
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used. However, there are some inherent drawbacks to frequency domain methods, such as the picket fence effect (PFE) and
the spectral leakage effect (SLE) [3]. They may introduce significant errors in the frequency estimates if the signal is non-
coherently sampled [5,6]. Studies have shown that if one can afford additional computational cost, it is possible to com-
pensate for errors and obtain highly accurate frequency estimates even with a small number of samples [1].

The interpolated DFT algorithm (IpDFT) is one of the most widely studied estimation methods [1–16]. The main idea of
this method is that the frequency error can be compensated by the ratio of weighted average of a certain number of known
spectral bins around the local maximal. When a maximum sidelobe decay window (MSDW, also known as Rife–Vincent
class I windows) is selected, the frequency error can obtained by means of simple analytical relationships [11–14]. Based on
the work of Offelli and Petri [10], Duda deduced the polynomial approximation interpolation algorithm (PAIpDFT) which can
be used for Dolph–Chebyshev windows and Kaiser–Bessel windows [15]. Polynomial coefficients are required to be cal-
culated before analysis, which means that coefficients for various windows must be calculated and saved in advance. This
process is inevitably intensive and troublesome, particularly for adjustable windows whose properties can be regulated by
one or more parameters.

In this paper, we first propose a new interpolation algorithm for the Hanning window in which the zero padding
technique was adopted to obtain more spectral lines within a frequency interval. Subsequently, this new algorithm is
extended for compatibility with other classic windows by introducing the main-lobe fitting technique. We studied sys-
tematic errors of the proposed method for various windows, as well as the performance under white Gaussian noise. Finally,
a comparative study was done. We demonstrate by simulation that in the presence of noise the proposed algorithm was
more robust than traditional algorithms.

2. Algorithm fundamentals

Let us consider, for simplicity but without loss of generality, the continuous cosine signal contaminated with additive
white noise, which is given in the form

xðtÞ ¼ A0 cos ð2πf 0tþθ0ÞþeðtÞ; ð1Þ
where A0 denotes the amplitude, f0 denotes frequency, θ0 denotes phase angle, t denotes the continuous-time variable,

and eðtÞ is the white noise. Sampling at frequency fs over the observation interval NΔtðΔt ¼ 1=f sÞ, the following discrete
cosine signal of N samples

xðnÞ ¼ A0 cos 2π
f 0
f s
nþθ0

� �
þeðnÞ; n¼ 0;1U U U ;N�1; ð2Þ

becomes available. In order to satisfy the Ny-quist Sampling Theorem, fs must be greater than 2f0. Frequency resolution is
obtained by Δf ¼ f s=N. The ratio of theoretical frequency to sampling frequency is given by

f 0
f s

¼ λ0
N
; ð3Þ

where λ0 denotes the number of cycles contained in the signal samples [14]. It should be stressed that λ0 also represents the
normalized frequency (frequency f0 scaled by frequency resolution) expressed in DFT bins [14]. At this stage, we ignore the
noise term and proceed to multiply the signal samples x(n) by the data window values w(n). The weighted samples are given
by

xwðnÞ ¼ A0 cos ð2πλ0n=Nþθ0ÞwðnÞ: ð4Þ
The discrete Fourier transform (DFT) of the weighted signal can be computed by

XwðkÞ ¼
XN�1

n ¼ 0

xwðnÞe� j2πNnk: ð5Þ

Applying (5) to weighted samples in (4) yields the explicit form

XwðkÞ ¼
A0

2
ejϕ0WNðk�λ0Þþ

A0

2
e� jϕ0WNðkþλ0Þ; ð6Þ

where WN(k) denotes the discrete time Fourier transform (DTFT) of the weighting function. If the signal is asynchronously
sampled, the normalized frequency λ0 lies between two largest spectral lines. Therefore, λ0 can be further written into two
parts with the integer part of lw and the fractional part δw (–0.5oδwr0.5), respectively.

λ0 ¼ lwþδw: ð7Þ
The integer part lw can be readily and correctly determined by means of a maximum search routine, as long as the SNR is

above threshold (approximately –18 to –20 dB) [17]. Substituting (7) into (6) gives the largest magnitude

��XwðlwÞ
��¼ A0

2
ejϕ0WNð�δwÞþe� jϕ0WNð2lwþδwÞ

��:�� ð8Þ
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