Genetics of Congenital Adrenal Hyperplasia

Fady Hannah-Shmouni, MD^a, Wuyan Chen, PhD^b, Deborah P. Merke, MD, MS^{a,c,*}

KEYWORDS

- Congenital adrenal hyperplasia Genetics Adrenal insufficiency
- 21-hydroxylase deficiency Pseudogene Genetic counseling

KEY POINTS

- Congenital adrenal hyperplasia (CAH) refers to a group of autosomal recessive disorders due to single-gene defects in the various enzymes required for cortisol biosynthesis.
- CAH represents a continuous phenotypic spectrum with more than 95% of all cases caused by 21-hydroxylase deficiency. Genotyping is an important tool in confirming the diagnosis or carrier state, provides prognostic information on disease severity, and is essential for genetic counseling.
- The genes for the various variants of CAH are well characterized, and mutation analysis is widely available.
- Certain ethnic groups have a predilection to certain genotypes, which may have resulted from an ancient founder effect, a hot spot in the gene, unequal crossing-over during meiosis, or gene conversion of point mutations from a pseudogene.
- Several pitfalls in the genetic diagnosis of patients with CAH exist.

INTRODUCTION

Congenital adrenal hyperplasia (CAH) refers to a group of autosomal recessive disorders that impair cortisol biosynthesis. Consequently, overproduction of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH)

E-mail address: dmerke@nih.gov

Disclosure Statement: The authors report no conflict of interest. This work was supported in part by the Intramural Research Programs of the National Institutes of Health Clinical Center and The Eunice Kennedy Shriver National Institute of Child Health of Human Development (NICHD). All authors have contributed equally to the article. Dr D.P. Merke ensured the scientific integrity of this work.

^a Section on Endocrinology and Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, CRC, Room 1-2740, 10 Center Drive, MSC 1932, Bethesda, MD 20892-1932, USA; ^b Clinical DNA Testing and DNA Banking, PreventionGenetics, 3800 South Business Park Avenue, Marshfield, WI 54449, USA; ^c Department of Pediatrics, The National Institutes of Health Clinical Center, 10 Center Drive, Bethesda, MD 20892-1932, USA

^{*} Corresponding author. National Institutes of Health, Building 10, CRC, Room 1-2740, 10 Center Drive, MSC 1932, Bethesda, MD 20892-1932, USA

Hannah-Shmouni et al

from the hypothalamus and pituitary glands, respectively, results in an increase and accumulation of various steroid precursors proximal to the block. This accumulation leads to defective cortisol synthesis, shunting of the accumulated steroid precursors through alternative pathways, and often adrenal gland hyperplasia. The biochemical defects in CAH translate to a spectrum of clinical consequences, which include adrenal insufficiency, genital ambiguity or disordered sex development, infertility, short stature, hypertension, and an increased risk of metabolic syndrome during adolescence and adulthood. The severity and clinical features of CAH vary depending on the enzymatic defect, its residual activity, age of presentation, and genotype.

CAH represents a continuous phenotypic spectrum (**Table 1**). More than 95% of all cases of CAH are caused by 21-hydroxylase deficiency (21-OHD); 21-OHD is classified into 3 subtypes according to clinical severity: classic salt wasting (SW), classic simple virilizing (SV), and nonclassic CAH (NCCAH; mild or late onset).¹ The classic

Table 1 Types of congenital adrenal hyperplasia		
САН Туре	Causative Gene	Clinical Manifestation
21-Hydroxylase deficiency	CYP21A2 CYP21A2	Classic: 46,XX ambiguous genitalia, adrenal insufficiency, salt-wasting, postnatal virilization Nonclassic: hyperandrogenism during childhood or early adulthood; may be asymptomatic CAH-X: in addition to the above, joint
	and TNXB	hypermobility, joint pain, multiple joint dislocations, midline defects including possible cardiac structural abnormalities
11β-Hydroxylase deficiency	CYP11B1	Classic: 46,XX ambiguous genitalia, postnatal virilization, hypertension Nonclassic: hyperandrogenism during childhood or early adulthood; may be asymptomatic
17α-Hydroxylase deficiency	CYP17A1	Classic: female phenotype (46,XX or 46,XY sex reversal), hypertension, pubertal delay with absence of secondary sexual characteristics Partial: 46,XY variable degrees of genital ambiguity; 46, XX variable development of secondary sexual characteristics
3β-Hydroxysteroid dehydrogenase type 2 deficiency	HSD3B2	Classic: 46,XX and 46,XY ambiguous genitalia, adrenal insufficiency, salt wasting
POR deficiency	POR	46,XX and 46,XY ambiguous genitalia, adrenal insufficiency, severe salt wasting, possible maternal virilization during pregnancy; possible skeletal malformations (Antley-Bixler syndrome); no postnatal virilization
Lipoid CAH	StAR	Classic: phenotypic female (46,XX or 46,XY sex reversal), adrenal insufficiency, severe salt wasting Nonclassic: 46,XY variable degrees of genital ambiguity, adrenal insufficiency
Cholesterol side-chain cleavage enzyme deficiency	CYP11A1	Classic: phenotypic female (46,XX or 46,XY sex reversal), adrenal insufficiency, salt wasting Nonclassic: 46,XY variable degrees of genital ambiguity, adrenal insufficiency

Abbreviations: CAH-X, congenital adrenal hyperplasia with *tenascin-X* impairment; POR, P450 oxidoreductase; StAR, steroidogenic acute regulatory protein.

Download English Version:

https://daneshyari.com/en/article/5656114

Download Persian Version:

https://daneshyari.com/article/5656114

Daneshyari.com