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a b s t r a c t

This series of two papers presents a method for estimating nonparametric noise and

frequency response function models of multivariable linear dynamic systems excited by

arbitrary inputs. It extends the results of Schoukens et al. (2006) [1] and Schoukens

and Pintelon (2009) [2] from single input, single output systems with known input

and noisy output observations (¼ output error problem), to multiple input, multiple

output systems where both the input and output are disturbed by noise

(¼ errors-in-variables problem). In Part I, the theory is developed for linear dynamic

multivariable output error problems. The results are supported by simulations. A

detailed comparison with the classical spectral analysis based on correlation techniques

shows that the proposed procedures are more robust. In Part II (Pintelon et al., 2009) [3],

the method first is applied to nonlinear systems, and parametric identification within

a generalized output error framework. Next, it is extended to handle errors-in-variables

problems, and identification in feedback. Finally, it is illustrated on four real

measurement examples.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Although most real life systems behave to some extend nonlinearly, linear dynamic models are very useful to
understand, control, and predict physical processes, and to design (new) products [4–7]. A first step in the construction of a
parametric transfer function model for the system is the measurement of the frequency response function (FRF) and its
uncertainty (variance). In this paper we focus on the measurement of the frequency response function and the output noise
variance in the frequency band of interest. Note that the knowledge of the noise variance is as important as the FRF value
itself: the noise variance is used to generate uncertainty bounds on the FRF with a given confidence level [4–9], and is used
as nonparametric weighting for the identification of the system transfer function model [7,10–14].

According to the nature of the excitation signal, one can distinguish between two noise measurement procedures. If the
input is arbitrary (random), then it is assumed that the input is known exactly (¼ output error stochastic framework), and
the output noise variance is obtained via spectral analysis (also called the H1 method) or coherence techniques [4,5,8,15,16].
Other methods such as the correlogram or the Hexp estimator using an exponential window exist for suppressing the
leakage in FRF measurements [16]. They, however, assume that the leakage of the full data record can be neglected; an
assumption that is not made here. Moreover, no noise covariance estimates are available. If the input is periodic, then both
input and output observations can be noisy (¼ errors-in-variables stochastic framework), and the input–output noise
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(co-)variances are obtained via the sample (co-)variances over consecutive input–output periods of the steady state
response [7,11,12,14,17–19]. In this series of two papers we handle the arbitrary input case for multivariable systems for
both the output error (Part I) and the errors-in-variables (Part II) case.

The major problem in estimating the nonparametric frequency response function and noise covariance matrix using
arbitrary excitations is the suppression of the system and noise leakage errors. These errors are introduced when
transforming a finite number N of time domain samples to the frequency domain via the discrete Fourier transform (DFT).
Spectral analysis methods handle this problem via time domain windowing. To reduce the noise on the estimates, the
record of N samples is divided into M subrecords of length N=M, which decreases the frequency resolution from fs=N to
Mf s=N, and the results are averaged over the M subrecords. Hence, choosing M is making a trade-off between on the one
hand the leakage elimination and the frequency resolution (the larger M, the larger the leakage errors and the smaller the
frequency resolution), and on the other hand the noise suppression (the variance of the estimates decreases by M). Part I of
the series of two papers presents a new method for nonparametric estimation of the FRF and the noise covariance matrix of
multivariable systems. The basic assumption made is that the system and noise transfer functions are smooth functions of
the frequency that can locally be approximated by a low degree polynomial. This so-called local polynomial approach has
maximal frequency resolution fs=N, and suppresses much better the system and noise leakage errors, while maintaining a
useful noise averaging effect that is at least as good as that of the spectral analysis methods.

The major contributions of Part I of this series of two papers are:

1. The generalization of the local polynomial approach in [1,2] to multi-input, multi-output (MIMO) systems.
2. The extension of the bias analysis in [1,2] of the local polynomial frequency response function (FRF) and of the noise

covariance estimates: the bias expressions are given as a function of the system and noise interpolation errors
(¼ spectral errors resulting from the polynomial interpolation of, respectively, the system and noise dynamics over
neighboring frequencies), and the system and noise leakage errors (¼ spectral errors resulting from the finite
measurement time of, respectively, the input–output signals and the input–output noise).

3. The robustification of the local polynomial estimate of the noise covariance matrix to lack of excitation in the frequency
band of interest.

4. The extension of the bias analysis in [1,2] (single-input, single-output), [4,8] (multiple-input, single output), and [5]
(multiple-input, multiple-output) of the spectral analysis estimates of the FRF and noise covariance matrix using the diff
[20], half-sine [22,23], and Hanning windows: the bias expressions are given as a function of the system and noise
interpolation errors, and the system and noise leakage errors.

Part I is organized as follows. First, Section 2 defines the problem to be solved and states the assumptions made
concerning the disturbing noise and the random excitation. Next, the local polynomial approach is extended to
multivariable systems in Section 3. Further, Section 4 studies the properties of the spectral analysis methods with the
rectangular, the diff, and the optimal half-sine windows; and shows that diff window performs equally well as the half-sine
window. How to calculate uncertainty bounds on the FRF estimates is handled in Section 5. A theoretical comparison
between the local polynomial approach and the spectral analysis methods is given in Section 6, while a numerical
comparison of the performance can be found in Section 8. The problem of handling operational data is discussed in Section
7. Finally, some conclusions are drawn (Section 9).

2. Problem statement and assumptions

Consider the linear dynamic multivariable system of Fig. 1 with nu inputs and ny outputs. The arbitrary (random)
excitation uðtÞ is assumed to be known and the output yðtÞ is disturbed by filtered (band-limited) white noise vðtÞ

(¼ output error framework). The input–output discrete Fourier transform (DFT) spectra UðkÞ, YðkÞ of N samples of the
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Fig. 1. Linear dynamic system with known input uðtÞ and noisy output yðtÞ. The output noise vðtÞ is written as filtered (band-limited) white noise.
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