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Abstract

This article considers the empirical mode decomposition pioneered by Huang together with the Hilbert vibration

decomposition method. Both methods are intended for extracting simple components using the varying instantaneous

frequency and amplitude from multicomponent non-stationary signals. The common properties of and the differences

between the two methods are taken into account.
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1. Introduction

Recently, Huang et al. [1] proposed the empirical mode decomposition (EMD) method to extract mono-
component and symmetric components, known as intrinsic mode functions (IMF), from nonlinear and non-
stationary signals. The term ‘‘empirical’’ chosen by the authors emphasizes the empirical essence of the
proposed identification of the IMF by their characteristic time scales in the initial complicated data. During
the last decade, serious mathematic works [2–5] have been dedicated to detailed analyses of the local EMD
method. However, a simple but important theoretical question remains: why is spline fitting of local extrema
able to generate the simplest components?

Some years later, a different technique, called the Hilbert vibration decomposition (HVD) method,
dedicated to the same problem of decomposition of non-stationary wideband vibration, was developed in [6].
The global HVD method is based on the Hilbert transform (HT) presentation of the instantaneous frequency
(IF) and does not involve spline fitting.

In the present paper we will attempt to analyze and compare the above-mentioned methods by investigating
and understanding their general principles and limitation, without discussion of the corresponding concrete
signal processing procedures and algorithms.
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2. Signal envelope and instantaneous frequency

The interpretation of an envelope, defined as the absolute value (modulus or magnitude) of a complex
(typically analytic) representation of a signal, has been the subject of investigation for years [7]. When dealing
with general modulated signals, it is often convenient to define the analytic signal X ðtÞ ¼ xðtÞ þ j ~xðtÞ, where
~xðtÞ is related to x(t) by the HT. According to analytic signal theory, a real vibration process x(t) measured by,
for example, a transducer, is only one of the possible projections (the real part) of some analytic signal X(t).
Then, the second or quadrature projection of the same signal (the imaginary part ~xðtÞ) will be conjugated
according to the HT. The analytic signal is represented geometrically in the form of a phasor rotating in a
complex plane. Using the traditional representation of the analytic signal in its trigonometric or exponential
form, X ðtÞ ¼ jX ðtÞj cos jðtÞ þ i sin jðtÞ½ � ¼ AðtÞeijðtÞ, one can determine its instantaneous amplitude (envel-
ope, magnitude)

AðtÞ ¼ jX ðtÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ ~x2ðtÞ

q
¼ eRe½ln X ðtÞ�, (1)

and its instantaneous phase cðtÞ ¼ arctan ~xðtÞ=xðtÞ
� �

¼ Im½ln X ðtÞ�, where ~xðtÞ is the HT of x(t) that can be
written as the convolution integral of x(t) with 1/pt as ~xðtÞ ¼ xðtÞ � 1=pt. The initial signal and its envelope
have common tangents at points of contact, but the signal never crosses the envelope. The plus sign of the root
square Eq. (1) corresponds to the upper envelope and the minus sign corresponds to the opposite sign lower
envelope, so they are always in antiphase relation. The envelope function contains important information
about the energy of the signal.

The instantaneous phase is a function of time; therefore, the first derivative of the instantaneous phase is
also a single value function of time [7,8]

oðtÞ ¼ _cðtÞ ¼
xðtÞ _~xðtÞ � _xðtÞ ~xðtÞ

A2ðtÞ
¼ Im

_X ðtÞ

X ðtÞ

� �
. (2)

It is called the instantaneous angular frequency, and it plays the most important role in an analytic signal.
The IF o(t) measures the rate of rotation in the complex plane. Naturally, for a simple monoharmonic signal,
the envelope and the IF are constant, and the phase angle increases linearly with time. In the general case, the
IF of the signal is a varying function of time. Moreover, the IF in some cases may change sign in some time
intervals. This corresponds to the change of rotation of the phasor from the counterclockwise to the clockwise
direction. The IF always has physical meaning and is nothing more than just the varying speed (rate) of
the phasor rotation in polar axes. In other words, whether it is positive or negative is always meaningful, like
the positive or negative instantaneous speed of a particle under a Brownian type motion along a real line. The
IF sign switch corresponds to a stopping and reverse rotation of the phasor. A signed value of the IF indicates
both the rate and the direction of rotation. In the time domain, the negative IF corresponds to the appearance
of a complex riding cycle (complicated cycle of alternating signal).

2.1. Average values and frequency bandwidth

The instantaneous amplitude and frequency of complicated vibration signals are nonconstant; they vary in
time. While the IF is a positive function, the signal itself has the same numbers of zero crossings and extrema.
When the IF has a negative value, the signal has one or multiple extrema between successive zero crossing. The
mean value of the envelope takes the form Ā ¼

R1
�1

AðtÞ dt. The mean value of time derivative squared of the

envelope _A
2
ðtÞ ¼

R1
�1

_A
2
ðtÞ dt determines the level of the envelope variation (Ā ¼ 1). The mean value of the IF

ō ¼
R1
�1

oðtÞA2ðtÞ dt ¼ ðm1=m0Þ, equal to the first normalized moment of the signal spectrum, is called the
central frequency (here mi is the ith moment of the spectrum) [7]. The mean value of the modulus of the IF
given by joj ¼

R1
�1
joðtÞjA2ðtÞ dt ¼ ðm2=m0Þ

1=2 is equal to the number of the signal zero crossing.

The mean value of the IF squared o2 ¼
R1
�1

o2ðtÞA2ðtÞ dt ¼ ðm2=m0Þ � _A
2
ðtÞ determines the level of the IF

variation. By summing up the IF variation around the mean value and the envelope variations, we obtained
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