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Abstract

In speech processing applications, imposing sparsity constraints on high-order linear prediction coefficients and prediction residuals
has proven successful in overcoming some of the limitation of conventional linear predictive modeling. However, this modeling scheme,
named sparse linear prediction, is generally formulated as a linear programming problem that comes at the expenses of a much higher
computational burden compared to the conventional approach. In this paper, we propose to solve the optimization problem by combin-
ing splitting methods with two approaches: the Douglas–Rachford method and the alternating direction method of multipliers. These
methods allow to obtain solutions with a higher computational efficiency, orders of magnitude faster than with general purpose software
based on interior-point methods. Furthermore, computational savings are achieved by solving the sparse linear prediction problem with
lower accuracy than in previous work. In the experimental analysis, we clearly show that a solution with lower accuracy can achieve
approximately the same performance as a high accuracy solution both objectively, in terms of prediction gain, as well as with percep-
tually relevant measures, when evaluated in a speech reconstruction application.
� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Linear prediction (LP) is a well understood technique
for the analysis, modeling, and coding of speech signals
(Vaidyanathan, 2009). The widespread use of LP of speech
can be attributed to its correspondence to the source-filter

model of speech production (Makhoul, 1975; Bäckström,
2004). An emitted speech sound can be modeled as a
combination of the excitation process (the air flow) and
the filtering process (vocal tract effect). The vocal tract
can, to a large extent, be modeled as a slow varying
low-order all-pole filter, while the air flow can be modeled
by a white noise sequence, for unvoiced sounds, or an
impulse train generated by periodic vibrations of the vocal
chords pulses, for voiced sounds (Hansen et al., 1987).

In speech analysis, the purpose of the all-pole model
obtained through LP is to construct a spectral envelope
that models the behavior of the vocal tract. For a segment
of unvoiced speech, considering the excitation of the
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all-pole filter as white noise, the envelope is the same as its
power spectrum of and the LP model coincides theoreti-
cally with the autoregressive (AR) model (Stoica and
Moses, 2005). However, for a segment of voiced speech,
the connection is more complex. The power spectrum of
the voiced speech signal has a clear harmonic structure that
can be approximated more effectively as a line spectrum
(Christensen and Jakobsson, 2009). The line frequencies
are located at the multiples of the pitch frequency and their
amplitude are given by the shape of the spectral envelope.

The all-pole coefficients are usually identified by mini-
mizing the mean-squared (2-norm) error of the difference
between the observed signal and the predicted signal
(Atal and Hanauer, 1971). In the source-filter model, this
approach yields the LP all-pole filter, thus the prediction
error (the residual signal) represents the source. Unvoiced
speech lends itself readily to the principles of the 2-norm
error criterion as a means of estimating the model param-
eters (Makhoul, 1975). Furthermore, the 2-norm is consis-
tent with an i.i.d. Gaussian interpretation of the prediction
residual (Saito and Itakura, 1967; Itakura and Saito, 1970).
The quality of the 2-norm based LP all-pole model in the
context of voiced speech, which is approximately two-
thirds of speech, is questionable and, theoretically, not
well-founded. In particular, the all-pole spectrum does
not provide a good spectral envelope and sampling the
spectrum at the line frequencies does not provide a good
approximation of their amplitudes (Murthi and Rao,
2000). In general, the shortcomings of LP in spectral envel-
ope modeling can be traced back to the 2-norm minimiza-
tion.2 In particular, analyzing the goodness of fit between a
given harmonic line spectrum and its LP model, as done in
Makhoul (1975), a major flaw can be derived. The LP tries
to cancel the input voiced speech harmonics causing the
resultant all-pole model to have poles close to the unit cir-
cle. Consequently, the LP spectrum tends to overestimate
the spectral powers at the formants, providing a sharper
contour than the original vocal tract response. A wealth
of methods have been proposed to mitigate these effects.
Some of the proposed techniques involve a general rethink-
ing of the spectral modeling problem (notably El-Jaroudi
and Makhoul, 1991; Murthi and Rao, 2000; Ekman
et al., 2008) while some others are based on changing the
statistical assumptions made on the prediction error in
the minimization process (notably Lee, 1988; Denoel and
Solvay, 1985). Many other formulations for finding the
parameter of the all-pole model exist, a special mention is

for methods that include perceptual knowledge into the
estimation process (e.g., Hermansky, 1990; Magi et al.,
2009), or account for the non-linearities in the speech pro-
duction model, e.g., Thyssen et al. (1994).

Despite the wealth of alternative methods introduced to
overcome the deficiencies of the 2-norm criterion, tradi-
tional usage of LP methods is, however, still confined to
modeling only the spectral envelope (the vocal tract trans-
fer function), i.e., the short-term redundancies of speech.
Hence, in the case of voiced speech, the predictor does
not fully decorrelate the speech signal because of the
long-term redundancies of the underlying pitch excitation.
This means that the residual will still have pitch pulses pre-
sent and the spectrum will still show a clear harmonic
structure. The usual approach is then to employ a cascaded
structure where, after LP is initially applied to determine
the short-term prediction coefficients, a long-term predictor
is determined to model the harmonic behavior of the spec-
trum (Hansen et al., 1987). Such a structure is arguably
suboptimal since it ignores the interaction between the
two different stages (Kameoka et al., 2010; Bensaid and
Slock, 2012). This is known in the literature and early con-
tributions have outlined gains in performance in jointly
estimating the two filters (the work in Kabal and
Ramachandran (1989) is perhaps the most successful
attempt). The combination of the two filters determines a
high-order linear predictor with a pretty evident sparse
characteristics.

In recent work (Giacobello et al., 2008; Giacobello et al.,
2012), a more general framework for LP was presented
with several benefit by introducing sparsity in the LP
minimization framework. This was renamed sparse linear
prediction (SpLP). In particular, while reintroducing
well-known methods to seek a short-term predictor that
produces a residual that is sparse rather than minimum
variance (e.g., Denoel and Solvay, 1985; Murthi and
Rao, 1998), the idea of employing high-order SpLP
(HOSpLP) to model the cascade of short-term and long-
term predictors was also introduced (Giacobello et al.,
2009,). The application of HOSpLP was originally
introduced for speech processing purposes, however its
formulation is intimately related to the regularization of
ill-conditioned problems and to the precise modeling of
long-term redundancies, thus it quickly found applications
in diverse fields, such as radar (Erer et al., 2014), geology
(Bochud et al., 2013), video packet-loss concealment
(Koloda et al., 2013), and general signal representations
(Angelosante et al., 2013; Angelosante, 2014).

The SpLP problem can be posed as a linear program-
ming problem, a special case of convex optimization. In
order to be deployed in real-time applications, it requires
its convex optimization core to be embedded directly in
the algorithm that runs online and where strict real-time
constraints apply. While convex optimization problems
can be efficiently solved, both in theory, with worst-case
polynomial complexity (Nesterov and Nemirovskii, 1994),
and in practice, such as Andersen et al. (2003), it is rarely

2 To the authors’ knowledge, the ‘‘original sin” behind the use of the
2-norm in LP, comes from its first application in speech coding, trying to
reduce the entropy of speech for more efficient encoding than simple
differential pulse code modulation (Atal, 2006). The fundamental theorem
of predictive quantization (Gersho and Gray, 1992) states that the mean-
squared reproduction error in predictive encoding is equal to the
mean-squared quantization error when the residual signal is presented
to the quantizer. Therefore, by minimizing the 2-norm of the residual,
these variables have a minimal variance whereby the most efficient coding
is achieved.
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