
Accelerating engineering software on modern multi-core processors

Edson Borin a,⇑, Philippe R.B. Devloo b, Gilvan S. Vieira a, Nathan Shauer b

a Institute of Computing, University of Campinas, Brazil
b Faculty of Civil Engineering, University of Campinas, Brazil

a r t i c l e i n f o

Article history:
Available online 16 January 2015

Keywords:
Parallel programming
Parallel processing
Cache-coherent Non Uniform Memory
Access
Finite Element Methods
Multi-core processors
Shared memory

a b s t r a c t

Recent multi-core designs migrated from Symmetric Multi Processing to cache coherent Non Uniform
Memory Access architectures. In this paper we discuss performance issues that arise when designing par-
allel Finite Element programs for a 64-core ccNUMA computer and explore solutions for these issues. We
first present the overview of the computer architecture and show that highly parallel code that does not
take into account the aspects of the system memory organization scales poorly, achieving only 2.8�
speedup when running with 64 threads. Then, we discuss how we identified the sources of overhead
and evaluate three possible solutions for the problem. We show that the first solution does not require
the application’s code to be modified, however, the speedup achieved is only 10.6�. The second solution
enables the performance to scale up to 30.9�, however, it requires the programmer to manually schedule
threads and allocate related data on local CPUs and memory banks and rely on ccNUMA aware libraries
that are not portable across operating systems. Also, we propose and evaluate ‘‘copy-on-thread’’, an alter-
native solution that enables the performance to scale up to 25.5�without relying on specialized libraries
nor requiring specific data allocation and thread scheduling. Finally, we argue that the issues reported
only happen for large data sets and conclude the paper with recommendations to help programmers
to design algorithms and programs that perform well on such kind of machine.

� 2014 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1. Introduction

The continuous shrinking of transistors size has allowed micro-
processor designers to put an ever-increasing number of comput-
ing cores into a single microprocessor chip. To make it easier for
operating systems designers and programmers to take advantage
of these extra cores, current microprocessor designs provide a sin-
gle view of the memory system to every single core; in other
words, the memory is shared among all cores. This model does
not require programmers to explicitly move data between systems
or memory modules when performing computation on different
cores, which reduces the program complexity and allow program-
mers to code parallel programs with libraries such as pthreads [1]
or Intel Thread Building Blocks (TBB) [2].

In order to enable performance to scale together with core
count, recent designs migrated from SMP (Symmetric Multi Pro-
cessing) to ccNUMA (cache coherent Non-Uniform Memory
Access) based architectures. Similar to the SMP approach, the
ccNUMA allows code running in any core to access any memory
word. However, the memory access latency varies accordingly to

the memory bank and the core position on the system, hence, par-
allel programs performance may vary accordingly to the threads
and data location on the system.

Devloo et al. [3] implemented the substructuring technique
proposed by Dohrmann [4] to parallelize a Finite Element software
and accelerate its execution on multicore processors. The algo-
rithm was tested on an 8-core SMP system and achieved almost
linear speedup. However, when executing the code on a 64-core
ccNUMA system the observed speedup of the algorithm was much
less than linear [5]. In this paper we discuss performance issues
that arise when designing parallel Finite Element Method pro-
grams for a parallel multi-core ccNUMA computer and explore
solutions for these issues. This paper is based upon Borin and Dev-
loo [5] and includes the following additional contributions:

� We propose ‘‘copy-on-thread’’, a heuristic that relies on the
‘‘first-touch’’ policy to transparently move data to local memory
banks before computation.
� We present experimental results and show that, even at the cost

of copying data, the ‘‘copy-on-thread’’ heuristic can improve
performance significantly and enables the performance to scale
up to 25.5� when running on a 64-core system.

http://dx.doi.org/10.1016/j.advengsoft.2014.12.003
0965-9978/� 2014 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

⇑ Corresponding author.

Advances in Engineering Software 84 (2015) 77–84

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.12.003&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2014.12.003
http://dx.doi.org/10.1016/j.advengsoft.2014.12.003
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


The paper is organized as follows: Section 2 provides back-
ground information on SMP and ccNUMA systems and present
the related work. Section 3 presents the Finite Element Method
software and how it was parallelized. Section 4 discuss how we
identified the sources of overhead and provide performance results
for the three different solutions. Finally, Section 5 presents our
conclusions.

2. Background and related work

Early multi-core designs had two or more cores connected to a
single shared main memory. Even though the computing core
resources are duplicated, multiple cores read or write data through
the same bus or memory controller, which can cause contention
when multiple cores try to access the memory at the same time.
Fig. 1 illustrates the topology of an early multi-core system with
four cores. This model is known as Symmetric Multi Processing,
or SMP.

Usually, memory access contention is not a problem on SMP
systems with few cores. Most of the time the local instruction
and data caches are capable of providing the core with instructions
and data, reducing the number of accesses to the main memory.
Also, the out-of-order execution model allows the cores to hide
some of the latency introduced when the memory is accessed.
Hence, with few cores attached to the same memory controller,
it is unlikely that the competition for the memory controller will
hurt the cores performance.

The increasing number of cores on recent designs changed this
scenario. Instead of 2 or 4 cores, up to 64 cores are attached to the
same shared memory system. In order to enable performance to
scale together with core count, recent designs distributed the
memory banks through the system, migrating from SMP (Symmet-
ric Multi Processing) to ccNUMA (cache coherent Non-Uniform
Memory Access) architectures. Similar to the SMP approach, the
ccNUMA allows code running in any core to access any memory
word. However, the memory banks are distributed and controlled
by multiple memory controllers, enabling the cores to concurrently
access different memory banks. As a result, memory access latency
varies accordingly to the memory bank and the core position on
the system. Fig. 2 illustrates the topology of a cache coherent
Non-Uniform Memory Access architecture with four processing
cores and four memory controllers. Each memory controller is con-
nected to a memory bank, to a computing core and to the other
memory controllers through the interconnecting bus.

The system illustrated in Fig. 2 allows core 1 to access the mem-
ory bank 1 at the same time core 2 accesses memory bank 2. Also,
the system allows core 1 to transparently access data on other
memory banks through the interconnecting bus, however, since
the data has to be routed through the interconnecting bus, it typ-
ically takes longer to access data on memory banks that are not
next to the processing core.

Despite the fact that different cores can access different mem-
ory banks in parallel, to make effective use of it, the data must
be allocated on memory banks that are next to the cores that are
executing the associated tasks (programs or threads). Notice that

if all the data gets allocated in a single memory bank, all the cores
will compete for the same memory controller, as in the SMP
approach. Moreover, the cores that are far away from the memory
controller will be penalized with additional latency when access-
ing the memory bank.

Several research works addressed the performance scalability
issue on ccNUMA systems. Tikir and Hollingsworth [6] proposed
a profile-driven mechanism to monitor the memory access behav-
ior of an application and decide whether memory pages should be
migrated or not. The authors used the hardware performance
counters to monitor the memory accesses and trigger page migra-
tion, which is performed transparently by the operating system.
The mechanism relies on specialized hardware support and modi-
fications on the operating system.

Lof and Holmgren [7] modified the Solaris operating system to
include a new mechanism named ‘‘affinity-on-next-touch’’. This
mechanism allows the software to inform the operating system
that the memory pages should be migrated to the memory bank
close to the next cpu that touches (read or write) them. The mech-
anism requires the user to insert calls to the ‘‘affinity-on-next-
touch’’ procedure on the software and the operating system must
be modified to migrate the pages on demand.

Yang et al. [8] studied the effects of data locality on the perfor-
mance of Gaussian 03 code executing on a multi-core ccNUMA sys-
tem. The authors explored how memory interleaving and dynamic
page migration affected the application performance on a SunFire
X4600 M2 system and showed that proper data placement can
accelerate the software up to 40% when running with 16 threads.

Awasthi et al. [9] proposed an adaptive first-touch page place-
ment policy and a dynamic page-migration mechanism to improve
memory access performance on ccNUMA systems. The adaptive
first-touch page placement policy takes into account several statis-
tics associated with the memory controller, such as queuing delays,
row-buffer hit-rates and bank contention when allocating pages
during the first-touch. Their dynamic page-migration mechanism
tries to migrate pages between memory banks in order to reduce
access delays. The authors report performance gains up to 35%,
however, both techniques require the operating system to be
modified.

Broquedis et al. [10] proposed ForestGOMP, a runtime system
that combines a thread scheduler together with a NUMA-aware
memory manager to improve the performance of OpenMP pro-
grams on NUMA architectures. Similar to previous work, the run-
time system relies on operating system support to migrate data
between memory banks connected to different memory
controllers.

Ribeiro et al. [11] presented MINAS, an API and a runtime sys-
tem to allocate and place data on NUMA architectures. The API
abstracts to the developer the topology of the architecture and
offers mechanisms to determine the initial allocation and place-
ment of application data. The runtime system requires specialized
NUMA support from the operating system.

Wittmann and Hager [12] proposed a software layer that
reduces adverse effects of dynamic OpenMP and TBB task distribu-
tion on ccNUMA systems by sorting tasks into locality queues, each
of which is preferably processed by threads that belong to the

Controller

Core 1 Core 2 Core 3 Core 4

Memory
Main

Memory

Fig. 1. Symmetric Multi Processing system.

Memory Controller

Core 3

Core 1 Core 2

Core 4

MemoryMemory

Memory
Bank 3

Bank 1 Bank 2

Memory
Bank 4

Fig. 2. Cache coherent Non-Uniform Memory Access system.

78 E. Borin et al. / Advances in Engineering Software 84 (2015) 77–84



Download English Version:

https://daneshyari.com/en/article/566096

Download Persian Version:

https://daneshyari.com/article/566096

Daneshyari.com

https://daneshyari.com/en/article/566096
https://daneshyari.com/article/566096
https://daneshyari.com

