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Abstract

Noise reduction is often formulated as a linear filtering problem in the frequency domain. With this formulation, the core issue of
noise reduction becomes how to design an optimal frequency-domain filter that can significantly suppress noise without introducing per-
ceptually noticeable speech distortion. While higher-order information can be used, most existing approaches use only second-order sta-
tistics to design the noise-reduction filter because they are relatively easier to estimate and are more reliable. When we transform non-
stationary speech signals into the frequency domain and work with the short-time discrete Fourier transform coefficients, there are two
types of second-order statistics, i.e., the variance and the so-called pseudo-variance due to the noncircularity of the signal. So far, only the
variance information has been exploited in designing different noise-reduction filters while the pseudo-variance has been neglected. In this
paper, we attempt to shed some light on how to use noncircularity in the context of noise reduction. We will discuss the design of optimal
and suboptimal noise reduction filters using both the variance and pseudo-variance and answer the basic question whether noncircularity
can be used to improve the noise-reduction performance.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Noise reduction, which aims at estimating the desired
clean speech signal from noisy observations, is a very
important problem and has attracted a significant amount
of research and engineering attention over the past few dec-
ades (Benesty et al., 2005, 2009; Loizou, 2007; Vary and
Martin, 2006; Huang et al., 2006). Typically, the noise-
reduction process is formulated as a filtering problem
where the clean speech estimate is obtained by passing
the noisy speech through a noise-reduction filter. With such
a formulation, the core issue of noise reduction becomes
how to design an optimal filter that can fully exploit the
speech and noise statistics to achieve maximum noise sup-

pression without introducing perceptually noticeable
speech distortion. While good filters can be designed in
the time domain, most widely used approaches so far work
in the frequency domain. The reason for working in the fre-
quency domain are multiple, including (but not limited to):
(1) the filtering process can be implemented very efficiently
thanks to the fast Fourier transform; (2) the filters at differ-
ent frequencies (or frequency bands) can be designed and
handled independently of each other, which offers tremen-
dous flexibility in dealing with colored noise; and (3) most
of our knowledge and understanding of speech production
and perception is related to frequencies, so in the frequency
domain, our knowledge can be easily used to help optimize
noise-reduction performance.

When we work in the frequency domain, we generally
deal with complex random variables even though the origi-
nal time-domain signals are real in the context of speech
applications. The main concern, then, is how to design
the optimal noise-reduction filters that can fully exploit
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the different statistics of the complex components obtained
via the short-time Fourier transform (STFT). Theoreti-
cally, all the different orders of statistics should be consid-
ered during the design of the optimal noise-reduction filter.
In practice, however, higher-order (higher than 2) statistics
are in general difficult to estimate, and as a result, most of
today’s noise-reduction algorithms consider only second-
order statistics. For a zero-mean complex random variable,
there are two basic types of second-order statistics depend-
ing on whether the random variable is circular or
noncircular.

A complex random variable A is said to be circular if its
probability density function (PDF) is the same as the PDF
of Aejr (Amblard et al., 1996a, Amblard et al., 1996b),
where j and r are the imaginary unit ðj2 ¼ �1Þ and any real
number, respectively. This is equivalent to saying that the
PDF of a circular complex random variable (CCRV) is a
function of the product AA� only (Amblard et al., 1996a),
where � denotes complex conjugation. An important con-
sequence of this is that the only nonnull moments and
cumulants of a CCRV are the moments and cumulants
constructed with the same power in A and A� (Amblard
et al., 1996a). Now let us confine our discussion and study
to the second-order issues. With the general definition of
circularity, we can readily define the second-order circular-
ity: a zero-mean complex random variable A is said to be
second-order circular if its pseudo-variance is equal to zero,
i.e., EðA2Þ ¼ 0, where Eð�Þ denotes mathematical expecta-
tion and EðAA�Þ ¼ EðjAj2Þ – 0. This indicates that the sec-
ond-order behavior of a CCRV is well described by its
variance. Note that the Fourier components of stationary
signals are CCRVs (Picinbono et al., 1994). Another pow-
erful aspect of the second-order CCRV is that the classical
linear estimation theory for real random variables can eas-
ily be applied to CCRVs. As a matter of fact, most of the
existing frequency-domain noise-reduction filters are
derived based on the classical mean-squared estimation
approach and use only the variance information while
assuming that EðA2Þ ¼ 0.

However, the STFT coefficients of a nonstationary sig-
nal like speech are not circular variables. To illustrate this,
we take a speech signal that is recorded from a female
speaker with an 8-kHz sampling rate and a 16-bit quantiza-
tion and partition it into overlapping frames. The overlap-
ping factor is 75% and the frame length is 8 ms. Each frame
is then transformed into the frequency domain using a 64-
point FFT. For each frequency band (except the 1st and
33rd bands where the coefficients are real), we treat the
coefficients as a complex random variable (for ease of expo-
sition, let us use A to denote this random variable) and esti-
mate its variance and pseudo-variance. Because speech is
nonstationary, we cannot simply replace the mathematical
expectation with a sample average. Instead, we use the
recursive estimator given in Eq. (88) of (Chen et al.,
2006) to estimate both the variance and pseudo-variance
(more discussion on how to estimate the variance and
pseudo-variance parameters will be given in Section 7).

Fig. 1 plots the estimation results for the 2nd frequency
band. It is clearly seen that the pseudo-variance EðA2Þ of
the STFT coefficients of the speech signal are not zero, so
STFT coefficients of speech signals are noncircular random
variables. Many natural questions then arise: is the noncir-
cularity useful for noise reduction? If so, how do we use the
noncircularity? How much it can improve noise-reduction
performance? This paper attempts to answer these ques-
tions. We will study and show how to fully exploit the sec-
ond-order statistics of a noncircular complex random
variable (see Neeser and Massey, 1993; Schreier and
Scharf, 2003 for a complete description of the second-order
behavior of a complex noncircular random variable) for
noise reduction. We will investigate the use of the so-called
widely linear (WL) mean-squared estimation theory
(Picinbono et al., 1995; Eriksson et al., 2009; Mandic and
Goh, 2009; Ollila, 2008) to formulate noise-reduction algo-
rithms in the frequency domain and explain the benefits
that can be achieved with this new formulation.

The rest of this paper is organized as follows. In Section
2, we formulate the single-channel noise reduction problem
in the STFT domain and give some useful definitions and
explanations that will be of great help for the rest of the
paper. Section 3 explains the different performance mea-
sures for noise reduction with WL estimation. In Section
4, we write the WL mean-squared error (MSE), which is
a simple and powerful tool for deriving the different opti-
mal WL filters. In Section 5, we derive the WL Wiener filter
and explains its differences from the classical Wiener filter.
Section 6 deals with the WL and classical tradeoff filters.
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Fig. 1. Illustration of the noncircularity of the STFT coefficients of a
speech signal: (a) a speech signal; (b) the EðjAj2Þ estimate; (c) the real part
of the EðA2Þ estimate; and (d) the imaginary part of the EðA2Þ estimate.
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