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a b s t r a c t

One of the most critical issues when deploying wireless sensor networks for long-term structural health
monitoring (SHM) is the correct and reliable operation of sensors. Sensor faults may reduce the quality of
monitoring and, if remaining undetected, might cause significant economic loss due to inaccurate or
missing sensor data required for structural assessment and life-cycle management of the monitored
structure. This paper presents a fully decentralized approach towards autonomous sensor fault detection
and isolation in wireless SHM systems. Instead of physically installing multiple redundant sensors in the
monitored structure (‘‘physical redundancy’’), which would involve substantial penalties in cost and
maintainability, the information inherent in the SHM system is used for fault detection and isolation
(‘‘analytical redundancy’’). Unlike traditional centralized approaches, the analytical redundancy approach
is implemented distributively: Partial models of the wireless SHM system, implemented in terms of arti-
ficial neural networks in an object-oriented fashion, are embedded into the wireless sensor nodes
deployed for monitoring. In this paper, the design and the prototype implementation of a wireless
SHM system capable of autonomously detecting and isolating various types of sensor faults are shown.
In laboratory experiments, the prototype SHM system is validated by injecting faults into the wireless
sensor nodes while being deployed on a test structure. The paper concludes with a discussion of the
results and an outlook on possible future research directions.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The continuing progress in structural health monitoring (SHM)
and wireless sensing technologies has led to prolonged periods of
time wireless SHM systems are able to operate autonomously
[1,2]. As a consequence, wireless SHM systems, if permanently in-
stalled on large-scale engineering structures such as bridges, dams,
towers or wind turbines, require sensors operating correctly and
precisely over long periods of time. However, when being deployed
over extended time periods, sensors are increasingly exposed to
harsh environmental conditions as well as ageing and degradation
that may cause less accurate sensor data or even sensor faults. It is
evident that wireless SHM systems deployed for long-term struc-
tural health monitoring require continuous performance monitor-
ing and calibration of the sensors. Monitoring and calibration, in
common practice scheduled on a periodic basis, are typically con-
ducted manually within maintenance trips to remote monitoring

sites, which are time-consuming and costly. Due to a lack of knowl-
edge about actual sensor conditions, the sensors deployed in wire-
less SHM systems are usually maintained and calibrated regardless
of their performance, causing further maintenance costs and de-
creased monitoring quality owing to unnecessary and inaccurate
sensor calibrations and undetected sensor faults.

To ensure a high quality of monitoring and to reduce mainte-
nance costs, it is essential to continuously monitor the quality of
sensor data and to automatically detect and isolate sensor faults.
Although much progress has been made in developing intelligent
SHM systems [3–6] and structural control systems [7,8], unde-
tected faults still remain an open problem posing substantial chal-
lenges in SHM research [9]. Faults in wireless SHM systems can
have several reasons, for example malfunctioning hardware, bugs
in the software embedded into the wireless sensor nodes, harsh
weather conditions, or environmental hazards. While some faults
in wireless SHM systems might be easy to detect – for example if
sensor data is missing – other faults might be more subtle, e.g. if
caused by small sensor drifts. In general, a fault can be defined as
a defect that leads to an error, and an error corresponds to an incor-
rect system state that may result in a failure [10]. A sensor fault, if
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not being detected and isolated, can propagate throughout the en-
tire SHM system causing severe failures that may degrade the
overall system performance or even cause a total system malfunc-
tion [11,12]. Sensor failures, in general, can be categorized into
hard failures and soft failures [13]. Hard failures are, for example,
large bias failures that occur instantaneously, and soft failures
are small biases or drifts that accumulate relatively slowly over
time.

Fault diagnosis, according to [14], can be described as a process
that includes (i) fault detection, (ii) fault isolation, (iii) fault identi-
fication, and (iv) fault accommodation. It should be noted that
unstructured uncertainties, process noise, and measurement noise
is usually outside the scope of fault diagnosis. This paper focuses
on the area of fault detection and isolation (FDI). The concept of
FDI has widely been studied in computer science for several years
[15,16], and numerous approaches towards FDI have been pro-
posed including, e.g., model-based approaches, knowledge-based
approaches, or a combination of both [14,17–19]. More recently,
FDI concepts have also been successfully implemented in a number
of engineering disciplines, such as aerospace engineering, mechan-
ical engineering and electrical engineering, to improve the avail-
ability and reliability of distributed engineering systems [20–22].
However, the investigation of fault detection and isolation in wire-
less SHM systems has received little attention.

This paper presents a decentralized approach towards fault
detection and isolation in wireless SHM systems. Implementing
the analytical redundancy approach, neural networks are embed-
ded into the wireless sensor nodes installed in the monitored
structure enabling each sensor node autonomously detecting and
isolating sensor faults in real time. The paper is organized as fol-
lows. First, background information on FDI concepts is given. Then,
the design and prototype implementation of a wireless SHM sys-
tem capable of fault detection and isolation, with strong emphasis
on the embedded neural network approach, is described. Next, lab-
oratory experiments are presented that are devised to validate the
performance of the wireless SHM system. For the laboratory exper-
iments, the prototype SHM system is installed on a test structure,
and sensor data obtained during normal (i.e. non-faulty) system
operation is used to train the fault diagnosis capabilities of the
SHM system. Thereupon, faults are injected into the wireless sen-
sor nodes to validate the system’s capabilities to autonomously de-
tect and isolate sensor faults. The paper concludes with a
discussion of the results and an outlook on possible future research
directions.

Fault detection and isolation based on analytical redundancy

Traditionally, a key technique towards fault detection and isola-
tion in distributed systems is the multiplication, i.e. the redundant
installation of hardware components such as sensors, data acquisi-
tion units or computers (‘‘physical redundancy’’). For example, for
measuring one single parameter of interest, multiple sensors are
physically deployed. To make a decision whether one of the ob-
served sensors is faulty, the outputs of the redundant sensors are
compared using decision rules that are commonly based on simple
majority voting logics [23]. However, physical redundancy involves
substantial penalties in cost and maintainability because multiple
hardware components must be installed in the monitored struc-
ture. Moreover, voting assumes independent faults, and sensors
operating in the same environment can hardly be considered inde-
pendent. Overcoming these problems, the concept of ‘‘analytical
redundancy’’ has emerged, fostered by the rapid advancements
in computer science and information technology [14].

Instead of physically installing multiple sensors for measuring
one single parameter, analytical redundancy takes advantage of

the redundant information inherent in the observed SHM system
and utilizes the coherences and relationships between the sensors
regularly installed [18]. Analytical redundancy, when applied for
fault detection and isolation in wireless SHM systems, has tremen-
dous potential to reduce system costs and power consumption of
wireless sensor nodes while substantially increasing availability,
reliability, safety and maintainability of the SHM system. For each
observed sensor, virtual sensor outputs representing non-faulty
operation are predicted based on measured outputs of correlated
sensors and on a priori knowledge about the system. Comparing
actual and virtual sensor outputs, residuals are generated for each
sensor. The residuals, reflecting inconsistencies between the actual
sensor behavior and the model-based, virtual sensor behavior,
serve as the basis for decision making with respect to potential
sensor faults.

As opposed to physical redundancy, which often uses simple
voting logics to determine faulty sensors, analytical redundancy
employs mathematical models of the observed decentralized
(SHM) system for mapping the inherent redundancy contained in
the system. The mathematical models used to generate the diag-
nostic residuals between actual and virtual sensor outputs can be
either first-principle models derived analytically or black box mod-
els obtained empirically. To estimate the virtual sensor outputs as
precisely as possible and to correctly interpret the residuals be-
tween actual and virtual sensor outputs, analytical redundancy,
compared to physical redundancy, requires more sophisticated
information processing techniques. For estimating virtual sensor
outputs and for generating the residuals, several techniques have
been proposed in related disciplines. Widely used and well ac-
cepted approaches include, e.g., estimation filters, band-limiting
filters as well as innovation testing based on Kalman filters,
threshold logic, and generalized likelihood ratio testing. Among
the most efficient approaches for estimating virtual sensor outputs
is the application of artificial neural networks, because neural net-
works are capable to accurately model non-linear and dynamic
decentralized systems (such as wireless SHM systems) without
the need for first-principle models or a priori knowledge about
the complex internal structures of the system observed [24]. A
plenitude of different types of neural networks has been studied
to advance engineering applications in the past decades. On the
other hand, due to the efficiency and reliability of such subsymbol-
ic techniques, research in this field is still very active, and new
approaches, such as the hierarchical graph neuron (HGN) [25] have
emerged and are exploited in different engineering fields in recent
years.

Neural networks, consisting of a set of processing units (neu-
rons) and weighted connections between the units, have the ability
(i) to find patterns and associations between given input and out-
put values of the network and (ii) to estimate output values based
on given input values – even if the input is inaccurate, noisy, or
incomplete. During a training phase, a neural network learns from
existing relationships, i.e. from given pairs of input and output val-
ues, resulting in a non-linear black box model that is applied in a
subsequent runtime phase. In the runtime phase, new input values
are presented to the neural network, which estimates the corre-
sponding output values by adapting itself to the new inputs. For
fault detection and isolation in wireless SHM systems, these dis-
tinct strengths of neural networks can advantageously be used to
estimate virtual outputs of a sensor based on actual outputs re-
corded by correlated sensors presented to the neural network as
inputs, which results in a precise and robust residual generation
[26].

The characteristics of neural networks, particularly the approx-
imation and adaptation capabilities, have led to a plenitude of
neural networks applications deployed to achieve analytical
redundancy in various types of engineering systems. Examples
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