
Performance of automatic differentiation tools
in the dynamic simulation of multibody systems

Alfonso Callejo a,⇑, Sri Hari Krishna Narayanan b, Javier García de Jalón a, Boyana Norris b

a Instituto Universitario de Investigación del Automóvil, Universidad Politécnica de Madrid, Madrid, Spain
b Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

a r t i c l e i n f o

Article history:
Received 29 November 2013
Received in revised form 25 February 2014
Accepted 9 March 2014
Available online 12 April 2014

Keywords:
Multibody dynamics
Semi-recursive penalty formulation
Automatic differentiation
Operator overloading
Source-to-source transformation
ADOL-C
ADIC2

a b s t r a c t

Within the multibody systems literature, few attempts have been made to use automatic differentiation
for solving forward multibody dynamics and evaluating its computational efficiency. The most relevant
implementations are found in the sensitivity analysis field, but they rarely address automatic differenti-
ation issues in depth. This paper presents a thorough analysis of automatic differentiation tools in the
time integration of multibody systems. To that end, a penalty formulation is implemented. First, open-
chain generalized positions and velocities are computed recursively, while using Cartesian coordinates
to define local geometry. Second, the equations of motion are implicitly integrated by using the trapezoi-
dal rule and a Newton–Raphson iteration. Third, velocity and acceleration projections are carried out to
enforce kinematic constraints. For the computation of Newton–Raphson’s tangent matrix, instead of
using numerical or analytical differentiation, automatic differentiation is implemented here. Specifically,
the source-to-source transformation tool ADIC2 and the operator overloading tool ADOL-C are employed,
in both dense and sparse modes. The theoretical approach is backed with the numerical analysis of a
1-DOF spatial four-bar mechanism, three different configurations of a 15-DOF multiple four-bar linkage,
and a 16-DOF coach maneuver. Numerical and automatic differentiation are compared in terms of their
computational efficiency and accuracy. Overall, we provide a global perspective of the efficiency of
automatic differentiation in the field of multibody system dynamics.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multibody systems (MBS) are mechanical systems made up of
rigid or flexible bodies interconnected by perfect or imperfect kine-
matic joints and subject to various forces. These systems are pres-
ent in numerous areas of industry, including mechanisms, robots,
vehicles, machinery, wind turbines, and aerospace engineering.
After more than 35 years of simulation of multibody systems, the
development of efficient multibody methods is still challenging.
The kinematic constraints between the rigid bodies and the pres-
ence of closed loops in the mechanisms often make the integration
of the differential–algebraic equations (DAEs) tricky, unstable, or
slow. Yet, in some applications such as driving simulators, hard-
ware-in-the-loop applications, on-board controllers, and optimiza-
tion algorithms, the computation of multibody system dynamics in
real-time is crucial. In order to improve the efficiency of multibody
dynamics software, several strategies can be adopted, some of
which are efficient formulations, efficient implementations, and
parallel implementations. The first two are addressed here.

Among the great variety of contemporary MBS formulations [1],
penalty schemes have proven to be a robust and efficient approach
for solving forward MBS dynamics using dependent coordinates
[2,3]. Basically, they avoid the direct enforcement of kinematic
constraints by introducing penalty terms proportional to the non-
fulfillment of constraints. When combined with implicit integra-
tors and projections, they allow for long integration time-steps
while keeping the simulation stable. One of the most interesting
approaches in this direction was presented in [4] and is followed
here in some of the stages. Natural (or fully Cartesian) coordinates1

are used to define local geometry and constraint equations, which
simplifies the modeling phase. Positions and velocities are then com-
puted recursively, exploiting the system’s tree-structured topology.

For the time integration of the equations of motion, the trape-
zoidal rule with velocity and acceleration projections is used. This
scheme requires the solution of a nonlinear system of equations,
which is generally solved with a Newton–Raphson algorithm. To
that end, the Jacobian matrix of the open-chain forces with respect
to the relative positions and velocities has to be computed. Since
this step takes most of the computation time, it is worth exploring

http://dx.doi.org/10.1016/j.advengsoft.2014.03.002
0965-9978/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +34 913365335.
E-mail address: a.callejo@upm.es (A. Callejo). 1 Cartesian components of points and unit vectors [2].

Advances in Engineering Software 73 (2014) 35–44

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.03.002&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2014.03.002
mailto:a.callejo@upm.es
http://dx.doi.org/10.1016/j.advengsoft.2014.03.002
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


efficient and accurate ways of differentiating computer functions,
while preserving the generality of the implementation.

There are several ways of computing the derivatives of a math-
ematical function with respect to its independent variables. For
example, one may apply differential calculus by hand and code
the differentiated functions; this is usually called analytical differ-
entiation. A similar but more automated technique is symbolic dif-
ferentiation, which is based on symbolic mathematical programs
that generate the derivative equations from the original function.
The derivatives must be generated in the third-party software
and sometimes exported, reimplemented, and compiled each time
a change is introduced in the equation; and only purely analytic
equations can be differentiated. This technique thus has consider-
able drawbacks from the generality point of view.

Another way of computing derivatives is through numerical
differentiation (ND) techniques such as finite-differences. Let f be
a scalar function that depends on variable x. Its derivative can be
numerically approximated as:

f 0 x0ð Þ �
df
dx
ðx0Þ �

f x0 þ hð Þ � f x0 � hð Þ
2h

ð1Þ

which corresponds to a centered-difference formula. More accurate
formulae can be obtained by evaluating the function in different
points. The advantage of these methods is that they only require
the original function. However, Eq. (1) demands a very small value
of the perturbation h. When h is very small, two similar numbers
are being subtracted in the numerator, and, because of the limited
computer precision, the derivative is less accurate than the original
function. Moreover, in the case of vector functions, the computa-
tional cost increases quickly as the problem size grows. The ND
error can be avoided through the complex-step derivative approxi-
mation [5], but this requires variables in the code to be changed to
the complex type.

Automatic or algorithmic differentiation (AD) allows differentiat-
ing a computer function (implemented in Fortran, C, C++, MATLAB,
etc.), automatically computing both first-order derivatives (e.g.
gradients and Jacobian matrices) and higher-order derivatives
(e.g. Hessian matrices). Its development time is shorter than using
analytical differentiation techniques, and it generates machine-
precision derivatives. In past investigations with the formulation
presented here, the operator overloading tool ADOL-C [6] was used
successfully [7]. However, a single AD tool was not enough for
assessing the computational efficiency, since the different types
of AD tools have very different performances. Also, only academic
examples were considered.

Little work in the MBS community has thoroughly addressed
AD as a way of differentiating computer functions. In 1996, Bischof
[8] used the source transformation tools ADIC and ADIFOR on a
Fortran code to compute vehicle sensitivities, but general perfor-
mance conclusions were not given. Three years later, Eberhard
and Bischof [9] focused on the time integration of sensitivities
using ADIFOR on a 5-DOF robot, and concluded that AD was less
efficient but simpler to implement than analytical derivatives.
Later, in [10], Dürrbaum et al. proved that the symbolic tool
MACSYMA generated derivatives faster than did ADOL-C for two
medium-size planar and spatial robots. In 2007, Ambrósio et al.
[11] simulated a satellite antenna as a flexible multibody system
and recommended AD over ND for accuracy reasons, even though
with little implementation details. Recently, Hannemann et al.
[12] applied the source transformation tool dcc and an operator
overloading tool to dynamic models. In general, rough descriptions
of AD tools and their implementation are provided; the results are
not compared with other AD tools; and academic rather than
industrial numerical examples are considered. Also, to the best of
the authors’ knowledge, the benefits of exploiting Jacobian sparsity
in MBS formulations by using AD has not been shown before. In

this work, both the source-to-source transformation tool ADIC2
[13] and the operator-overloading tool ADOL-C [6] are used on
three numerical examples, namely a 1-DOF spatial four-bar mech-
anism, a 15-DOF multiple four-bar linkage and a 16-DOF coach
model. These examples are used as medium to large benchmarks
of ND and AD tools, with special focus on computational efficiency
and sparse Jacobian exploitation.

2. Multibody formulation

In this section, a general-purpose MBS formulation is presented
[4]. The formulation is explained in four steps: first, the open-chain
recursive differential equations are proposed; second, the loops are
closed by introducing position penalty terms; third, the trapezoidal
rule of integration is introduced; and fourth, velocity and acceler-
ation projections are carried out.

2.1. Open-chain equations

In order to apply recursion techniques, the system is considered
as a tree-structured multibody system (see Fig. 1(a)). In the case of
closed-chain systems, certain joints and rods2 are temporarily re-
moved and enforced later through constraint equations. Cartesian
coordinates are used to define the velocity and acceleration of
bodies:

Zi �
_si

xi

� �
ð2Þ

_Zi �
€si

_xi

� �
ð3Þ

where _si and €si are, respectively, the velocity and acceleration of the
point attached to body i that instantaneously coincides with the ori-
gin of the inertial reference frame. In this way, all bodies share the
same reference point, which has interesting advantages [14]. The
recursive expression of the Cartesian velocities and accelerations
of body i in terms of those of body i� 1 is

Zi ¼ Zi�1 þ bi _zi ð4Þ

_Zi ¼ _Zi�1 þ bi€zi þ di ð5Þ

Note the lack of transformation matrices in the previous equa-
tions. Scalar zi is the relative coordinate of joint i. Vector bi repre-
sents the velocity of the point of body i that coincides with the
origin of the global reference frame when _zi ¼ 1 and _zj ¼ 0; j – i;
and vector di is the increase in acceleration from i� 1 to i when

Fig. 1. (a) Tree-structured MBS. (b) Closure-of-the-loop revolute joint.

2 Slender bodies with two spherical joints and a negligible moment of inertia
around their axis.

36 A. Callejo et al. / Advances in Engineering Software 73 (2014) 35–44



Download English Version:

https://daneshyari.com/en/article/566109

Download Persian Version:

https://daneshyari.com/article/566109

Daneshyari.com

https://daneshyari.com/en/article/566109
https://daneshyari.com/article/566109
https://daneshyari.com

