
gdbOF: A debugging tool for OpenFOAM�

Santiago Márquez Damián ⇑, Juan M. Giménez, Norberto M. Nigro
International Center for Computational Methods in Engineering (CIMEC), INTEC-UNL/CONICET, Güemes 3450, Santa Fe, Argentina

a r t i c l e i n f o

Article history:
Received 5 August 2011
Received in revised form 6 December 2011
Accepted 11 December 2011
Available online 5 January 2012

Keywords:
Computational fluid dynamics
Finite volume method
OpenFOAM
Data structures
Debugging
gdbOF

a b s t r a c t

OpenFOAM� libraries are a great contribution to CFD community and a powerful way to create solvers
and other tools. Nevertheless in this creative process a deep knowledge is needed concerning with classes
structure, for value storage in geometric fields and also for matrices resulting from equation systems,
becoming a hard task for debugging.

To help in this process a new tool, called gdbOF, attachable to gdb (GNU debugger) is presented in this
paper. It allows to analyze classes structure at debugging time. This application is implemented by gdb
macros, these macros can access to code classes and also to their data in a transparent way, giving the
requested information. This tool is tested for different application cases, such as the assemble and storage
of matrices in a scalar advective–diffusive problem, non orthogonal correction methods in purely diffu-
sive tests and multiphase solvers based on Volume of Fluid Method. In these tests several types of data
are checked, such as: internal and boundary vector and scalar values from solution fields, fluxes in cell
faces, boundary patches and boundary conditions. As additional features of this tool data dumping to file
and a graphical monitoring of fields are presented.

All these capabilities give to gdbOF a wide range of use not only in academic tests but also in real
problems.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

OpenFOAM� is a CFD library that allows users to program solv-
ers and tools (for pre-processing or post-processing) in a high-level
specific language. This high-level language refers to the fact of
writing in a notation closer to the mathematical description of
the problem, releasing the user from the internal affairs of the
code.

This programming approach contrasts with procedural lan-
guages approach, such as Fortran, that are widely used in academic
and scientific environments but oriented to the low-level problem
resolution, i.e., the manipulation of individual floating-points val-
ues. Thus, in order to achieve the abstraction from the low-level cod-
ing it is necessary to follow another way, so that the Object-Oriented
Programming (OOP) paradigm is selected. This methodology pro-
duces code which is easier to write, to validate and to maintain com-
pared with purely procedural techniques. Respect to OpenFOAM� it
is completely written is C++. This language is less rigorously object-
oriented than the others languages (such as SmallTalk or Eiffel), due
to the inclusion of some characteristics that are not strictly object-
based. The main add-on is operator overloading, which is essential
to working with tensor, vector and scalar fields objects concepts as

in the mathematical notation. On the other hand, it is a multiplat-
form language and, due to that it is based on C, is as fast as any other
procedural languages [1].

There are five fundamental concepts in OOP, whereby Open-
FOAM� achieves its objectives: modularization, abstraction, encap-
sulation, inheritance and polimorphism [2]. All of them are widely
used in the code. Polymorphism is a key concept in OpenFOAM�,
which is clearly demonstrated by the proliferation of virtual meth-
ods (methods that must be implemented in child classes). Exam-
ples of this include the implementation of boundary conditions,
which inherit from a base class patchField, so they have the
same interface but different implementations. Another example
is the representation of tensor fields: in this case geometric-

Field is the parent class and various tensor fields inherit from
it: scalarField (rank 0), vectorField (rank 1) and tensor-

Field (rank 2), each one implementing the interface provided by
the parent class in different ways.

In addition to these OOP features, there are other tools of the
C++ language which are not strictly object-based and those are
used in OpenFOAM�. They are the aforementioned operator over-
loading and the use of preprocessor macros. Macros allow to insert
code directly in the program, avoiding the overhead of invoking a
function (passing parameters to the stack, do a jump, take param-
eters), without losing the code readability [3].

As it was mentioned, using these techniques a library oriented
to high-level development is generated, ensuring that the user only

0965-9978/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2011.12.006

⇑ Corresponding author.
E-mail address: santiagomarquezd@gmail.com (S. Márquez Damián).
URL: http://www.cimec.org.ar (S. Márquez Damián).

Advances in Engineering Software 47 (2012) 17–23

Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2011.12.006
mailto:santiagomarquezd@gmail.com
http://www.cimec.org.ar
http://dx.doi.org/10.1016/j.advengsoft.2011.12.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


has to take care about the model to solve and not other details of
coding [4]. On the other hand, some problems could arise in the
application creation stage yielding to undesired results. There be-
gins the code debugging work, and this includes monitoring values
corresponding to variables involved in the resolution, such as, ten-
sors, vectors and/or scalar fields defined at cell or face centers,
coefficients in the system matrix, and many other examples. In
addition, debugging is not ever motivated by problems, but simply
for exploratory or control purposes [5].

From the side of debugging tools in GNU-Linux platforms, gdb
(GNU-debugger) is the defacto standard. It includes a variety of
tools for code analysis and data inspection at run-time [6] which
gives a successful environment for OpenFOAM� debugging. gdb of-
fers a powerful print command likely to inspect arrays in memory,
nevertheless it can be used directly only in simple data structures
like lists or Fields. Data examination gets hard when viewing
the desired data involves polymorphism and inheritance con-
nected with the virtual methods used by the library. This work
requires to walk through the general class tree looking for the attri-
butes which are wanted to be inspected. Moreover, once desired
attributes are found, these maybe do not directly represent the
information required by the developer. In the case of the matrices
generated by fvm methods, they store the coefficients using the
LDU Addressing technique (see gdbOF User’s Manual, Appendix
A1), so it is necessary to apply a decoding algorithm to transform
it into the traditional format (full or sparse), and to control and oper-
ate with their values.

The main objective of the gdbOF tool is to solve problems like
those explained in the previous paragraph. This tool is imple-
mented by gdb macros and it is based on an implementation of
gdb macros for STL (Standard Library for C++) debugging [7]. These
macros simplify the task of debugging the OpenFOAM� libraries,
performing the work actions transparently to the user: the simple
call of a gdb macro from console triggers a sequence of actions that
include: navigate the OpenFOAM� class tree, collect information
and reorder it for representation in an user readable format.
Moreover, gdbOF includes the option of writing the output into a
file on disk and to view it graphically. This output is formatted
appropriately to be imported in numerical computation software
such as Octave or Matlab�, thus allowing the developer to expand
the possibilities of data inspection at debugging time.

In this work the design concept of the tools will be presented
and several cases will be solved as examples of use. These prob-
lems not only emerge in an academic context but also occur in real
application environments: the first consists in a scalar advective–
diffusive problem in which the emphasis will be placed on the
assembling and storage of matrices; the second consists in a
non-orthogonal correction method in purely diffusive tests; and
the third is an analysis of multiphase solvers based on Volume of
Fluid Method. The last examples are focused in volumetric and sur-
face data inspection both in array and graphical format.

2. Basic debugging

One of the most common tasks in the debugging process is to
look at the values stored in an array, that is possible in gdb with
the command of Example 1, where v is the array to analyze.

Example 1 View array.

$(gdb) p ⁄v@v_size

Nevertheless, as it was pointed out in the previous section, data
inspection in OpenFOAM� requires often more complex sentences.
A typical example is to verify at debugging time that a certain
boundary condition is being satisfied (typically when the boundary
condition is coded directly in the solver and the next field informa-
tion is obtained after solving the first time-step). Boundary
conditions in OpenFOAM� are given for each patch in a Geomet-

ricField, then, assuming that the inspected patch is indexed as
0 (the attribute BoundaryField has information of all the
patches), sentence presented in Example 2 is needed to observe
the values on this patch, where vSF is a volScalarField.

Example 2 View Boundary Field values.

$(gdb) p ⁄(vSF.boundaryField_.ptrs_.v_[0].v_)
@(vSF.boundaryField_.ptrs_.v_[0].size_)

Note that the statement in Example 2 does not include any call
to inline functions, which could generate some problems in gdb,
giving even more complex access to information.

gdbOF solves the inconvenience of knowing the attribute’s place
and using long statements. Using gdbOF commands, as it is shown
in Example 3, the same results are obtained. Note the simplifica-
tion of the statement, this is the gdbOF spirit, reducing the work
needed to debug and perform the same tasks more simply and
transparently.

Example 3 View Boundary Field values with gdbOF.

$(gdb) ppatchvalues vSF 0

There are many examples in OpenFOAM� like the previous one
in which the necessity of a tool that simplifies the access to the
complex class diagram can be useful. Note that in the last example
it was not mentioned how the index of the desired patch was
known. Usually OpenFOAM� user knows only the string that
represents the patch, but not the index by which it is ordered in
the list of patches. Here gdbOF simplifies the task again, providing
the ppatchlist command which displays the list of patches with
the corresponding indexes. Regarding to other basic gdfOF tools
please refer to the gdbOF User’s Manual, Chapter 2.

3. Advanced debugging

3.1. System matrix

Increasing the complexity of debugging, there can be found
cases involving not only the search and dereference of some plain
variables. A typical case is the dumping of the linear system, Ax = b,
generated by the discretization of a set of differential equations
which are being solved. This is stored using the LDUAddressing
technique which takes advantage of the sparse matrix format
and saves the coefficients in an unusual way. This storing format
and the necessity of accessing to individual matrix coefficients
lead to trace the values one by one and to apply a decoding algo-
rithm. There are two commands to do this task, one to dump the
data as full matrices and the other to dump the data as sparse
matrices.

In order to implement the necessary loops over the matrix
elements, gdb provides a C-like syntax to use iterative (while,
do-while) and control structures (if, else). These commands have
a very low performance, so the iteration over large blocks of data1 http://openfoamwiki.net/index.php/Contrib_gdbOF.

18 S. Márquez Damián et al. / Advances in Engineering Software 47 (2012) 17–23

http://openfoamwiki.net/index.php/Contrib_gdbOF


Download English Version:

https://daneshyari.com/en/article/566162

Download Persian Version:

https://daneshyari.com/article/566162

Daneshyari.com

https://daneshyari.com/en/article/566162
https://daneshyari.com/article/566162
https://daneshyari.com

