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a b s t r a c t

This paper presents a B-spline-based branch-and-bound algorithm for unconstrained global optimiza-
tion. The key components of the branch-and-bound, a well-known algorithm paradigm for global optimi-
zation, are a subdivision scheme and a bound calculation scheme. For these schemes, we first introduce a
B-spline hypervolume to approximate an objective function defined in a design space, where the approx-
imation is based on Latin-hypercube sampling points. We then describe a proposed algorithm for finding
global solutions approximately within a prescribed tolerance. The algorithm includes two procedures
that are performed iteratively until all stopping conditions are satisfied. One involves subdivision into
mutually disjoint subspaces and computation of their bound information, both of which are accom-
plished by using B-spline hypervolumes. The other updates a search tree that represents a hierarchical
structure of subdivided subspaces during the solution process. Finally, we examine the computational
performance of the proposed algorithm on various test problems that cover most of the difficulties
encountered in global optimization. The results show that the proposed algorithm is complete without
using heuristics and has good potential for application in large-scale NP-hard optimization.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many research groups, especially those in engineering and sci-
ence, have made significant efforts to study theoretical and algo-
rithmic aspects of local optimization techniques in the last six
decades. In contrast, much less attention has been paid to global
optimization algorithms. However, in recent years, we have begun
to recognize the presence of many global optimization problems
over a wide range of applications and also to understand that exist-
ing local optimization methods cannot consistently provide global
solutions to those problems. For this reason, global optimization
approaches have been attracting considerable interest from re-
search communities in engineering, applied mathematics, and
operations research. In addition, remarkable improvements in
computational capabilities expand the range of global optimization
problems. These advances enable us to tackle many famous hard
optimization problems such as those of scheduling, protein folding,
packing, nonlinear least squares, chemical equilibrium, and robot
arm design.

Existing global optimization algorithms can be classified into
stochastic approaches, which find the global minimum only with a
high probability, and deterministic approaches, which are guaran-
teed to find a global optimum with a required accuracy. The former
methods involve function evaluations at a suitably chosen random
sample of points and subsequent manipulation of the sample to

find global minima. A number of techniques such as simulated
annealing [1] and genetic algorithms [2] employ analogies to phys-
ics and biology to find a global optimum.

The most successful class of deterministic approaches is
branch-and-bound algorithms [3–6]. The branch-and-bound algo-
rithm begins with a branching procedure that subdivides the feasi-
ble domain into two or more subspaces. Then a bounding
procedure is applied to the subspaces to compute each one’s bound
information. The branching procedure is applied recursively to the
subspaces, generating so-called nodes, which represent unex-
plored subspaces in a dynamically generated search tree. The lower
bounds obtained by the bounding procedure allow us to eliminate
large portions of the feasible domain early in the computation, so
only a small part of the feasible domain must be processed. The
lower bounds can be computed by using such techniques as the
difference of convex functions [7] and interval analysis techniques
[8]. These methods are generally not applied to all types of objec-
tive functions. Only analytic forms are available, since underesti-
mation functions for the lower bounds are derived from the
known analytic functions. In addition to the optimization methods
described above, we can find internet sites [9,10] containing many
commented links to online information and software packages rel-
evant to global optimization, and a good recent online survey of
techniques is available [11–13]. This paper proposes a combination
of a B-spline-based volume representation and branch-and-bound
algorithm to overcome the limitations described above and to
achieve fast computation for the lower bounds using the attractive
properties of B-spline objects.
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In this work, we first introduce a B-spline representation model
to describe an objective function with randomly scattered data ex-
tracted in a feasible domain, namely, the B-spline hypervolume
model [14]. Next, we present its approximation techniques based
on the least-squares and pseudo-inverse methods [15]. We then
describe the proposed algorithm for finding approximate global
solutions to unconstrained optimization problems, which is based
on a branch-and-bound framework. The proposed method includes
two procedures. One involves branching into subspaces and com-
puting their bound information, both of which are accomplished
using B-spline hypervolumes. The other updates a search tree that
represents a hierarchical structure of the subdivided subspaces
during the solution process; e.g., it prunes subspaces from the
search tree. Numerical results on a variety of test examples are pre-
sented to illustrate the computational performance of the pro-
posed algorithm, and finally, conclusions are presented regarding
its advantages and limitations.

2. B-spline hypervolumes for approximating objective
functions

2.1. B-spline hypervolume model

A B-spline hypervolume [14] is a generalized volume model
function that represents multivariate scalar fields distributed over
a bounded region of multidimensional Euclidean space. It is an
extension of B-spline curves or surfaces [16] to multivariate vol-
ume objects defined in multidimensional space. Since an objective
function is generally a real-valued function of an arbitrary number
of design variables, a special version of a B-spline hypervolume can
be constructed to represent an objective function defined in D-
dimensional design space. Thus, we propose Eq. (1) as a represen-
tation model approximating the objective function for global
optimization

f ðx1; . . . ; xDÞ ¼
Xn1�1

i1¼0

. . .
XnD�1

iD¼0

fi1 ...iD Nk1
i1
ðx1Þ . . . NkD

iD
ðxDÞ ð1Þ

where xj is the jth design variable, fi1 ...iD denotes the control value of
the objective function, nj and kj are the number of control points
and the order of the B-spline basis function along the xj direction,
respectively, and N

kj

ij
ðxjÞ denotes the normalized B-spline basis func-

tion of order kj defined on the knot vector in the xj direction. Knot
vectors defined in the D-dimensional design space of Eq. (1) are de-
scribed as follows:

Knot vector in x1 direction; T1 ¼ ftð1Þi1
gi1¼n1þk1�1

i1¼0

. . . . . . . . .

Knot vector in xD direction; TD ¼ ftðDÞiD
giD¼nDþkD�1

iD¼0

ð2Þ

2.2. Approximation with a B-spline hypervolume

Here we introduce an approximation algorithm that constructs
the B-spline hypervolume shown in Eq. (1) with an irregularly scat-
tered data set, i.e., D-dimensional sample points Pi ¼ ðp1

i ; . . . ; pD
i Þ,

and its corresponding function values Qi = f(Pi), where
i = 0, . . . , Np � 1. For simplicity, Eq. (1) is rewritten as

f ðxÞ ¼
XNc�1

J¼0

fJ/JðxÞ ð3Þ

where x ¼ ðx1; . . . ; xDÞ, Nc ¼ n1 � � � � � nD, fJ ¼ fi1 ...iD , /JðxÞ ¼ Nk1
i1
ðx1Þ

� � � � � NkD
iD
ðxDÞ, and the index J is calculated [14] as follows:

J ¼ i1 þ ðn1Þ � i2 þ ðn1 � n2Þ � i3 þ � � � þ ðn1 � � � � � nD�1Þ � iD ð4Þ

Approximation algorithms can be classified into two categories:
over-determined and under-determined problems. In the former,
the number of data points given is not smaller than the number
of unknown control values fJ ¼ fi1 ; . . . ; iD (i.e., Np P Nc), and vice
versa in the latter case. Both problems can be formulated in the
matrix form shown in Eq. (5). When the sample points PI and their
corresponding function values QI are substituted into Eq. (3), we
obtain Eq. (5) after some manipulation

fQ Ig ¼ ½/IJ ¼ /JðPIÞ�ffJg ð5Þ

where I = 0, . . . , Np � 1, J = 0, . . . , Nc � 1, and [/IJ] is an Np � Nc ma-
trix. When Np P Nc (the over-determined problem), we apply a
least-squares technique to obtain Eq. (6) for the unknown {fJ}

ffJg ¼ ð½/IJ �
T ½/IJ�Þ

�1½/IJ �
TfQIg ð6Þ

When Np < Nc (the under-determined problem), Eq. (7) can be
obtained by applying a pseudo-inverse technique to determine
the unknown {fJ}

ffJg ¼ ½/IJ �
Tð½/IJ�½/IJ�

TÞ�1fQIg ð7Þ

The matrices [/IJ]T[/IJ] in Eq. (6) and [/IJ][/IJ]Tin Eq. (7) are both
symmetric and positive semi-definite, so we can obtain a unique
solution {fJ}. Note that this solution is valid when [/IJ] is full rank.
If [/IJ] is not full rank, then the singular value decomposition tech-
nique is used to obtain a solution. Finally, we determine the knot
value tðeÞj in the e-directional knot vector, Te ¼ ftðeÞj g

j¼neþke�1
j¼0

(e = 1, . . . ,D) by the following algorithm [16,17]:

Algorithm: Knot determination for a B-spline
approximation

Given pe
min 6 pe

i 6 pe
max (i = 0, . . . ,Np � 1), we compute the

three parts of the e-directional knot vector, where
e = 1, . . . , D.

// Step 1: For the front part of the knot vector

We set tðeÞ0 ¼ � � � ¼ tðeÞke�1 ¼ pe
min.

// Step 2: For the middle part of the knot vector
For j = ke to ne � 1,

d = (Np � 1)/(ne � ke + 1)
i = int [(ke � 1 + j) � d]
a = (ke � 1 + j) � d � i

tðeÞj ¼ ð1� aÞ � pe
i þ a � pe

iþ1

End of for-loop

// Step 3: For the rear part of the knot vector

We set tðeÞne ¼ � � � ¼ tðeÞneþke�1 ¼ pe
max.

3. Global optimization algorithm

The branch-and-bound principle provides a general framework
for global optimization in non-convex problems. It is non-heuristic
in the sense that it maintains provable upper and lower bounds on
the globally optimal objective value; it generally terminates with
stop conditions guaranteeing that the optimal point found so far
is within a prescribed tolerance. However, algorithms based on
the branch-and-bound framework can be slow. In the worst case,
they require a significant effort that grows exponentially with
the problem size; however, in some fortunate cases, they converge
with much less effort.

The idea behind the branch-and-bound method is frequently de-
scribed as a divide and conquers approach in the computer science
literature. The main characteristic of this class of algorithms is that
the quality of the solution found by the algorithm improves as the
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