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a b s t r a c t

This article presents a new multi-step numerical method based on u-function series and designed to
integrate forced oscillators with precision. The new algorithm retains the good properties of the MDFpPC
methods while presenting the advantages of greater precision and that of integrating the non-perturbed
problem without any discretization error. In addition, this new method permits a single formulation to be
obtained from the MDFpPC schemes independently of the parity of the number of steps, which facilitates
the design of a computational algorithm thus permitting improved implementation in a computer.

The construction of a new method for accurately integrating the homogenous problem is necessary if a
method is sought which would be comparable to the methods based on Scheifele G-function series, very
often used when problems of satellite orbital dynamics need to be resolved without discretization error.

Greater precision compared to the MDFpPC methods and other known integrators is demonstrated by
overcoming stiff and highly oscillatory problems with the new method and comparing approximations
obtained with those calculated by means of other integrators.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Forced oscillators are presented in many Physics and Engineer-
ing models. Harmonic oscillators also form part of Celestial
Mechanics models, such as the classic two-body problem, and
the satellite problem, as the K-S and B-F transformations reduce
the Kepler problem to oscillators. Efficient numerical algorithms
are needed, therefore, to provide very precise approximations.

In [1], the so called Ferrándiz u- functions are defined, accord-
ing to their properties. Based on these, a series method is
constructed in order to numerically integrate perturbed, stable
and convergent oscillators. Said method is a generalisation of the
Scheifele series methods [2,3] which, with two frequencies
integrates the non-perturbed problem exactly. Recently a new
method, TFSTS, based on the Scheifele methods, which verify this
property has been published in [4]. The series method is extremely
precise. However, it has the disadvantage that it needs to be
adapted to each specific problem. In order to resolve this difficulty,
in [5], the transformation of the u-function series method in the
MDFpPC multi-step scheme is explained. Calculation of the coeffi-
cients of the multi-step scheme are made through a recurrent pro-
cedure based on the existing relation between the divided
differences and the elemental and complete symmetrical
functions.

The recurrent calculation of the coefficients permits the
MDFpPC scheme to be considered as a VSVO type scheme.

The algorithm proposed in [5], despite its good behaviour,
presents the difficulty of imprecise integration of the homogenous
problem. In addition, it requires the definition of two multi-step
schemes both in the explicit and implicit case, according to the
parity of the number of steps, a fact which makes it difficult to
implement in a computer.

This article introduces a new proposal for the MDFpE, MDFpI and
MDFpPC schemes in order to obtain a single formulation of the
algorithms independently of the parity of the number of steps.

The new algorithm, while retaining the excellent properties of
the aforementioned dual frequency methods, improves its preci-
sion, which is demonstrated by overcoming the problems proposed
in [5] using both multi-step methods.

2. u-functions series method

In this point a brief description is provided of the construction
of the u-functions and the corresponding numerical series method
for integration of perturbed oscillators [1,5].

With x(t) being the solution of the perturbed oscillator of the
equation

x00ðtÞ þ a2xðtÞ ¼ e � f ðxðtÞ; x0ðtÞ; tÞ;
xð0Þ ¼ x0; x0ð0Þ ¼ x00;

ð1Þ
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corresponding to a forced oscillation with frequency a2 and pertur-
bation function f = f(x(t),x0(t), t), from which it is supposed that it is
analytic and with continuous partial derivatives with respect to the
independent variables x, x0, t in I = [�T,T]. Similarly it is admitted
that the solution x t; x0; x00; t0

� �
obtained with the initial conditions

given is also analytic in I.
Under these conditions, the perturbation function may be ex-

pressed throughout the solution as gðtÞ ¼ f x t; x0; x00; t0
� �

; x0 t; x0;ð
�

x00; t0Þ; tÞ.
Applying the differential operator D2 + b2 to IVP (1),

D4xþ ða2 þ b2ÞD2xþ a2b2x ¼ ðD2 þ b2ÞegðtÞ; is obtained: ð2Þ

Taking into account the initial conditions and the form of the
IVP (1)

xð0Þ ¼ x0; x0ð0Þ ¼ x00; is obtained

x00ð0Þ ¼ �a2x0 þ ef x0; x00;0
� �

¼ x000;

x000ð0Þ ¼ �a2x00 þ e~rf x0; x00; 0
� �

� x00; x
00
0;1

� �
¼ x0000

ð3Þ

where ~rf is the usual notation of the gradient vector

@f
@x
;
@f
@x0

;
@f
@t

� �
:

Introducing the notation L4 (x) = (D2 + b2)(D2 + a2)x, and
expressing gðtÞ ¼

P1
n¼0cn

tn

n!
, a new IVP is obtained

L4ðxÞ ¼ e
X1
n¼0

ðcnþ2 þ b2cnÞ
tn

n!

xð0Þ ¼ x0; x0ð0Þ ¼ x00; x00ð0Þ ¼ x000; x000ð0Þ ¼ x0000 ;

ð4Þ

with the same exact solution x t; x0; x00; t0
� �

as the original problem
(1) in I = [�T,T]. This solution will be expressed as the sum of the
solution to the non-perturbed problem with the initial conditions
given, plus the solution of the perturbed problem with the initial
null conditions. In order to obtain the solution to the perturbed
problem, the principle of superposition of solutions is applied to
the following family of IVPs:

L4ðxnÞ ¼
tn

n!

xnð0Þ ¼ x0nð0Þ ¼ x00nð0Þ ¼ x000n ð0Þ ¼ 0:
ð5Þ

Solutions of (5) are denoted by Wn(t) with

n P 0: ð6Þ

The functions Wn(t), depend on a and b satisfying:

W0nðtÞ ¼ Wn�1ðtÞ with n P 1 and ð7Þ

WnðtÞ þ ða2 þ b2ÞWnþ2ðtÞ þ a2b2Wnþ4ðtÞ ¼
tnþ4

ðnþ 4Þ! ð8Þ

with n P 0.
Depending on the values a and b it is possible to consider the

five following cases:

2.1. Case I. ða – 0; b – 0;a –bÞ

In order to obtain the solution to the non-perturbed problem
with the initial conditions given, the following ‘‘canonical’’ IVP’s
are resolved:

L4ðuiðtÞÞ ¼ 0 ð9Þ

uðjÞi ð0Þ ¼ di;j i; j ¼ 0;1;2;3: with di,j being the Kronecker delta.
The solution to the non-perturbed problem with the initial

conditions given is

xHðtÞ ¼ x0u0ðtÞ þ x00u1ðtÞ þ x000u2ðtÞ þ x0000 u3ðtÞ ð10Þ

where

u0ðtÞ ¼
1

a2 � b2 ða
2 cosðbtÞ � b2 cosðatÞÞ ð11Þ

u1ðtÞ ¼
1

a2 � b2

a2

b
sinðbtÞ � b2

a
sinðatÞ

 !

u2ðtÞ ¼
1

a2 � b2 ðcosðbtÞ � cosðatÞÞ

u3ðtÞ ¼
1

a2 � b2

1
b2 sinðbtÞ � 1

a2 sinðatÞ
� �

:

Therefore the solution of the IVP (4) is

xðtÞ¼x0u0ðtÞþx00u1ðtÞþx000u2ðtÞþx0000 u3ðtÞþe
X1
n¼0

ðcnþ2þb2cnÞWnðtÞ; ð12Þ

where

WnðtÞ ¼
X1
m¼0

ð�1Þm

ð2mþ 4þ nÞ!
b2mþ2 � a2mþ2

b2 � a2
t2mþ4þn: ð13Þ

Defining

unþ4ðtÞ ¼ WnðtÞ with n P 0; ð14Þ

it is possible to write the general solution of (4), in terms of the
so-called Ferrandiz u-functions.

xðtÞ ¼ x0u0ðtÞ þ x00u1ðtÞ þ x000u2ðtÞ þ x0000 u3ðtÞ

þ e
X1
n¼0

ðcnþ2 þ b2cnÞunþ4ðtÞ; ð15Þ

x0ðtÞ ¼ x0u00ðtÞ þ x00u0ðtÞ þ x000u
0
2ðtÞ þ x0000 u2ðtÞ

þ e
X1
n¼0

ðcnþ2 þ b2cnÞunþ3ðtÞ: ð16Þ

Let us suppose that we have calculated an approximation to the
solution and its derivates in the point t = nh, we shall call these
approximations xn; x0n; x00n and x000n .

In order to obtain an approximation to the solution of

L4ðxðtÞÞ ¼ ef ðxðtÞ; x0ðtÞ; tÞ
xðnhÞ ¼ xn; x0ðnhÞ ¼ x0n; x00ðnhÞ ¼ x00n; x000ðnhÞ ¼ x000n :

ð17Þ

in the point (n + 1)h, in (17), the change was made to the indepen-
dent variable t = s + nh, becoming

L4ðxðsÞÞ ¼ ef ðxðsÞ; x0ðsÞ; sÞ
xð0Þ ¼ xn; x0ð0Þ ¼ x0n; x00ð0Þ ¼ x00n; x000ð0Þ ¼ x000n ;

ð18Þ

thus making it possible to reinitialise the process, taking into ac-
count that

f ðxðsÞ; x0ðsÞ; sÞ ¼ gðsÞ ¼
X1
n¼0

cn
sn

n!
;

where

ck ¼
dkgð0Þ

dsk
¼ dkgðnhÞ

dtk
: ð19Þ

The approximation to the solution and its derivate in point
(n + 1)h, is given by

xnþ1 ¼ xnu0ðhÞ þ x0nu1ðhÞ þ x00nu2ðhÞ þ x000n u3ðhÞ

þ e
Xp�3

j¼0

ðcjþ2 þ b2cjÞujþ4ðhÞ þ eb2ðcp�2upþ2 þ cp�1upþ3Þ: ð20Þ

x0nþ1 ¼ xnu00ðhÞ þ x0nu0ðhÞ þ x00nu
0
2ðhÞ þ x000n u2ðhÞ

þ e
Xp�3

j¼0

ðcjþ2 þ b2cjÞujþ3ðhÞ þ eb2ðcp�2upþ1 þ cp�1upþ2Þ: ð21Þ
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