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a b s t r a c t

The Sequential Monte Carlo (SMC) implementation for the probability hypothesis density (PHD) filter,
referred to as the SMC-PHD filter, is a good candidate for multi-target tracking (MTT) problems. It re-
cursively propagates the weighted particle set that approximates the multi-target posterior density. In
this paper, we propose an improved SMC-PHD filter for MTT called the particle-gating SMC-PHD filter.
First, a robust gating based on particles propagated from a previous time period is proposed to select the
observations of survival targets. Second, a sigma-nearest-gating is proposed to accurately select the
observations of new targets. By employing only the observations obtained by the above algorithms to
update the state estimations, the overall processing speed of the filter is significantly improved. In ad-
dition, a softening factor is suggested to lower the average number of clutters in the updater. This
provides more accurate estimation compared with the basic SMC-PHD filter. Finally, the respective real-
time and tracking performances of the proposed SMC-PHD filter are verified by the simulation results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multi-target tracking (MTT) jointly determines the time-vary-
ing number of targets and their states from a sequence of noisy
observations that originate from true targets and clutters. The fi-
nite set statistics (FISST) proposed by Mahler [1,2] provides a
systematic treatment of these unordered targets and observations
—i.e., the states of targets and observations are modeled by a
random finite set (RFS) —in which both the number of elements
and their values are random. Extending the RFS and the Bayesian
inference to MTT problems, the probability hypothesis density
(PHD) filter has been proposed [3–6] as a more tractable alter-
native to the optimal Bayesian filter, which recursively propagates
the intensity function of the multi-target posterior density.

The PHD filter has been approximately implemented via the
Sequential Monte Carlo (SMC) method [7], the finite Gaussian
mixtures (GM) technique [8], or their hybrids [9–11]. Owing to the
requirement of the Gaussian mixture assumption, the applications
of the GM-PHD filter are constrained in linear and mildly non-
linear system. On the other hand, the SMC-PHD filter is applicable
for most general situations and has been receiving considerable
attention [12] on account of its advantage of the freedom of linear
and Gaussian assumptions.

The computational complexity of the SMC-PHD filter is strongly

dependent on the number of targets and observations and the
total number of particles [7]. It is thus highly time intensive,
especially in dense clutter environments. When the number of
particles is fixed, the degradation of the filtering speed is primarily
caused by the observations originating from clutters participating
in updating particles. If real observations are selected and most
clutters are discarded in the updater, the filtering speed can be
greatly improved.

An intuitive idea is to select real observations by the state es-
timates from the previous time. Various gating techniques have
been applied in the PHD filter and have achieved good real-time
performance [13,14] for the GM-PHD filter and [15–17] SMC-PHD
filter. Li et al. [15] proposed a Sigma-gating that updates particles
using only the local nearby measurements inside a specified sig-
ma-gate. Zheng et al. [16] used a data-driven mechanism with a
gating technique to improve the real-time performance by se-
lecting the measurements nearest to the expected positions of
state estimates. The approach of Shi et al. [17], which was similar
to that of Zheng et al. [16], opportunistically selected a fixed
number of observations from a varying number of observations for
filtering. According to our knowledge, these gating techniques are
primarily based on state estimates and supply no solution for miss
detection.

The multi-target density filter is only based on observation;
therefore, disturbed by clutters or detection uncertainty, the state
estimates are likely to be erroneous. They may drift away from real
positions, or their number may be more or less than the real
number of targets. Thus, the output of gating techniques based on
state estimates may provide false observations originating from
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clutter or it may miss some real observations. In other words, a
small amount of survival observations will be discarded and not
employed to update the state estimations; accordingly, the track of
the small amount of survival targets will be lost.

It is worth noting that if the gating method is based on the state
estimation extracted from the multi-sensor multi-Bernoulli filter
[18,19], the output will be more accurate than that from the PHD
filter. The reason is multi-sensor target tracking supplies a better
detection performance compared with single-sensor target track-
ing, as well as multi-Bernoulli filter [20] provides more accurate
state estimation. However, the two imperfections mentioned
above will just be improved, not be solved completely. In this case,
we still need to continue the investigation on gating method for
the single-sensor PHD filter.

A gating method [21] that is free of state estimates was pro-
posed based on the propagated particles from a previous time.
This method is based on the fact that, in the SMC-PHD filter, al-
though particles interfered by nearby clutters may produce erro-
neous state estimates, they inherently contain more real in-
formation about survival targets than state estimates. However, all
the particles were used to select true observations for designing
importance functions of the particle PHD filter in [21], which leads
to the overall processing speed not improving or even being
somewhat degraded.

In this paper, we employ the propagated particles to select true
observations from a novel perspective. By randomly extracting a
small amount of particles from the propagated particles, the se-
lection operation does not affect the overall filtering speed;
moreover, the posterior density information is sufficiently used.
Since the missed target's posterior is only approximated by very
few particles, we propose the definition of the ownerless particles
and the claimed particles, which supply the gist at the next time to
select the observation of a re-detected target.

The benefits of our approach are twofold. First, more accurate
tracking is obtained because our particle gating supplies more
available real observations than gating methods based on state
estimates for the SMC-PHD filter. Moreover, the softening factor
cooperates with the gating behavior of eliminating most clutters
by lowering the clutter density. Second, high-speed processing is
achieved because only the observation nearest to the center in the
specified gate participates in updating state estimations. Mean-
while, without a birth observation, no newborn particles are pre-
dicted in the sigma-nearest-gating.

The remainder of this paper is organized as follows. The tech-
nical background, including the PHD filter, as well as its SMC im-
plementation and influence of state estimates on gating methods,
is provided in Section 2. The method of designing the proposed
particle-gating SMC-PHD filter is presented in Section 3, where its
advantages over current gating methods are analyzed. The per-
formance evaluations and results are described in Section 4. Our
concluding remarks are presented in Section 5.

2. Background

2.1. The PHD filter

In a multi-target system, the multi-target state and multi-target
observation are two collections of individual targets and ob-
servations, in which the state and the observation at timek are two
vectors of possibly different dimensions. As targets may survive or
die, or a new target appears in time, the dimensions of the two
collections may also change in time. Moreover, there exists no
ordering for the elements of the multi-target state and observa-
tion. Applying the random set theory [3], the multi-target state
and observation are naturally represented as finite subsets, Xk and

Zk, which are defined as follows:
The defined ( )N k targets are located at … ( )x x, ,k k N k,1 , in the

single-target state space ES (e.g. nx) at time k. Then, the multi-
target state is represented as:

{ }= … ∈ ( ) ( )( )X x x E, , 1k k k N k S,1 ,

where ( )ES is the collection of all finite subsets of the space ES .
These states may be of survive targets, spawned targets, or birth
targets. Similarly, there are ( )M k observations located at

… ( )z z, ,k k M k,1 , in the single-target observation space EO (e.g. nz) at
time k, then the multi-target observation is represented as:

{ }= … ∈ ( ) ( )( )Z z z E, , 2k k k M k O,1 ,

in which ( )EO is the collection of all finite subsets of the space EO,
and the observation may be derived from a real target, clutter, or
false alarm.

Let ( ) …Z Z Z: , ,k
k1 denote the time sequence of the observation

set. Assuming that each target evolves and generates observation
independently of each other, and one target generates no more
than one observation at each scan. The clutter points are in-
dependent from the observations; moreover, their average num-
ber is Poisson-distributed [3]. Based on the above assumptions, the
multi-target Bayesian filter [1] is proposed as the theoretically
optimal approach to multi-target tracking by recursively propa-
gating the multi-target posterior ( | )|

( )p X Zk k k
k .

Moreover, assuming ( | )|
( )p X Zk k k
k and the multi-target prior

( )( | )| −
−p X Zk k k

k
1

1 to be Poisson-distributed, by respectively com-

pressing them into the first moment ( | )|
( )D x Zk k k
k and ( | )| −

( − )D x Zk k k
k

1
1

known as PHD, we have the PHD filter [3] as the approximation of
the multi-target Bayesian filter. Their relationship is given as fol-
lows:

… → ( | ) → ( | ) → ( | ) → …
↓ ↓ ↓

… → ( | ) → ( | ) → ( | ) → …

− | − −
( − )

| −
( − )

|
( )

− | − −
( − )

| −
( − )

|
( )

p X Z p X Z p X Z

D x Z D x Z D x Z

k k k
k

k k k
k

k k k
k

k k k
k

k k k
k

k k k
k

1 1 1
1

1
1

1 1 1
1

1
1

in which the top line represents the multi-target Bayesian filter,
while the bottom line represents the PHD filter. Additionally, the
down arrows represent that the multi-target density is com-
pressed into its first-order moment. The PHD filter is completed by
recursively propagating the PHD of the multi-target posterior.

Using the abbreviation ( | ) = ( )|
( )

|D x Z D xk k k
k

k k k
abbr

, the PHD predictor is

∫γ ϕ( ) = ( ) + ( ) ( ) ( )| −
| −

− − | − − −D x x x x D x dx, .
3k k k k k

k k
k k k k k k1

1
1 1 1 1 1

with one abbreviation used

ϕ ( ) = ( ) ( | ) + ( | )| − − − | − − | − −x x p x f x x b x x, .k k k k S k k k k k k k k k k1 1 , 1 1 1 1 1

where γ ( )xk k is the PHD of the RFS of the new targets at time k. In
addition, ( | )| − −b x xk k k k1 1 is the PHD of the RFS of targets spawned
from the previous state −xk 1, ( | )| − −f x xk k k k1 1 is the transition density
of individual targets, and ( )−p xS k k, 1 is the probability that the target
still survives at time k.

The PHD updater is

∑
λ

( ) = − ( ) +
( ) ( | )

( ) + [ ]
( )

( )
|

∈ | −
| −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟D x p x

p x g z x

c z D p g
D x1

4
k k k D k k

z Z

D k k k k

k k D k k
k k k,

,

1 ,
1

k

where ( )p xD k k, is the detection probability of a target with state xk,
( | )g z xk k is the likelihood of individual targets, and

∫[ ] = ( ) ( )| − − | − − −D h h x D x dx.k k k k k k k1 1 1 1 1. λ ( )c z is the PHD of clutter at
time k, where λ denotes the average number of clutter points per
scan, and ( )c . denotes the spatial distribution of each clutter
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