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a b s t r a c t

We consider a dictionary learning problem aimed at designing a dictionary such that the signals admit a
sparse or an approximate sparse representation over the learnt dictionary. The problem finds a variety of
applications including image denoising, feature extraction, etc. In this paper, we propose a new hier-
archical Bayesian model for dictionary learning, in which a Gaussian-inverse Gamma hierarchical prior is
used to promote the sparsity of the representation. Suitable non-informative priors are also placed on the
dictionary and the noise variance such that they can be reliably estimated from the data. Based on the
hierarchical model, a variational Bayesian method and a Gibbs sampling method are developed for
Bayesian inference. The proposed methods have the advantage that they do not require the knowledge of
the noise variance a priori. Numerical results show that the proposed methods are able to learn the
dictionary with an accuracy better than existing methods, particularly for the case where there is a
limited number of training signals.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sparse representation has been of significant interest over the
past few years. It has found a variety of applications in practice as
many natural signals admit a sparse or approximately sparse re-
presentation in a certain basis [1–3]. In many applications such as
image denoising and interpolation, signals often have a sparse re-
presentation over a pre-specified non-adaptive dictionary, e.g. dis-
crete cosine/wavelet transform (DCT/DWT) bases. Nevertheless,
recent research [4,5] has shown that the recovery, denoising and
classification performance can be considerably improved by utiliz-
ing an adaptive dictionary that is learnt from training signals [5,6].
This has inspired studies on dictionary learning aimed to design
overcompelete dictionaries that can better represent the signals. A
number of algorithms, such as the K-singular value decomposition
(K-SVD) [4], the method of optimal directions (MOD) [7], dictionary
learning with the majorization method [8], and the simultaneous
codeword optimization (SimCO) [9], were developed for over-
complete dictionary learning and sparse representation. Most al-
gorithms formulate the dictionary learning as an optimization

problemwhich is solved via a two-stage iterative process, namely, a
sparse coding stage and a dictionary update stage. The main dif-
ference among these algorithms lies in the dictionary update stage.
Specifically, the MOD method [7] updates the dictionary via solving
a least square problem which admits a closed-form solution for
dictionary update. The K-SVD algorithm [4], instead, updates the
atoms of the dictionary in a sequential manner and while updating
each atom, the atom is updated along with the nonzero entries in
the corresponding row vector of the sparse matrix. The idea of se-
quential atom update was later extended to provide sequential
update of multiple atoms each time [9], and recently generalized to
parallel atom-updating in order to further accelerate the con-
vergence of the iterative process [10]. These methods [4,7–10], al-
though offering state-of-the-art performance, have several limita-
tions. Specifically, they may require the knowledge of the sparsity
level or the noise/residual variance for sparse coding (e.g. [4]), or
this knowledge is needed for meticulously selecting some regular-
ization parameters to properly control the tradeoff between the
sparsity level and the data fitting error (e.g. [8,10]). In practice,
however, the prior information about the noise variance and spar-
sity level is usually unavailable and an inaccurate estimation may
result in substantial performance degradation. To mitigate these
limitations, a nonparametric Bayesian dictionary learning method
called beta-Bernoulli process factor analysis (BPFA) was recently
developed in [11]. The proposed method can estimate the usage
frequency of each atom, based on which the required number of
atoms can be automatically inferred. Moreover, BPFA is also able to
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automatically infer the noise variance from the test image. These
merits are deemed an important advantage over other dictionary
learning methods. For [11], the posterior distributions cannot be
derived analytically, and a Gibbs sampler was used for Bayesian
inference. We also note that a class of online dictionary learning
algorithms were developed in [12–16]. Unlike the above batch-
based algorithms [4,7,9,10] which use the whole set of training data
for dictionary learning, online algorithms continuously update the
dictionary using only one or a few (or a small amount of) training
data, which enables them to handle very large data sets.

In this paper, we propose a new hierarchical Bayesian model for
dictionary learning, in which a Gaussian-inverse Gamma hier-
archical prior [17,18] is used to promote the sparsity of the re-
presentation. Suitable non-informative priors are also placed on
the dictionary and the noise variance such that they can be reliably
inferred from the data. Based on the hierarchical model, a varia-
tional Bayesian method [19–21] and a Gibbs sampling method [22]
are developed for Bayesian inference. For both inference methods,
there are two different ways to update the dictionary: we can ei-
ther update the whole set of atoms in one iteration, or update the
atoms in a sequential manner. When updating the dictionary as a
whole, the proposed variational Bayesian method has a dictionary
update formula similar to the MOD method. For the Gibbs sampler,
a sequential update seems to be able to expedite the convergence
rate and helps achieve additional performance gain. Simulation
results show that the proposed Gibbs sampling algorithm has
notable advantages over other state-of-the-art dictionary learning
methods in a number of interesting scenarios.

Note that the Gaussian-inverse Gamma hierarchical prior used
in our paper is quite different from the beta-Bernoulli (also re-
ferred to as the spike-and-slab) prior employed in [11]. These two
priors have their respective merits and both are widely used to
promote the sparsity of solutions. In particular, the use of the
Gaussian-inverse Gamma prior for sparse Bayesian learning has
achieved great success in the framework of compressed sensing,
e.g. [23–26]. It is therefore interesting to examine the problem of
dictionary learning with such a prior and see if an additional
performance improvement can be achieved. Note that the spar-
sity-promoting prior model (i.e. the hierarchical Gaussian-inverse
Gamma prior) employed in this paper was also used in the sparse
PCA framework (e.g. [27]). Nevertheless, to our best knowledge,
our paper presents a first attempt to use the hierarchical Gaussian-
inverse Gamma prior model to solve the dictionary learning pro-
blem. Although dictionary learning is closely related to sparse PCA
[27], they still are two different problems with very distinct ob-
jectives: dictionary learning tries to learn an overcomplete dic-
tionary to sparsely represent the observed data, whereas the
sparse PCA aims to find a few sparse principle components of the
underlying data matrix. Also, although sharing some degree of
similarity, the prior model used in our paper is not exactly the
same as the prior model in [27]. As a consequence, the derivations,
update rules, and choice of model parameters in our work are
different from those in [27]. Our work also provides an interesting
comparison between two different inference methods, namely, the
variational Bayes and the Gibbs sampling, for dictionary learning.

The rest of the paper is organized as follows. In Section 2, we
introduce a hierarchical prior model for dictionary learning. Based
on this hierarchical model, a variational Bayesian method and a
Gibbs sampler are developed in Sections 3 and 4 for Bayesian in-
ference. Simulation results are provided in Section 5, followed by
concluding remarks in Section 6.

2. Hierarchical model

Suppose we have L training signals { } =yl l
L

1, where ∈ yl
M . Dic-

tionary learning aims at finding a common sparsifying dictionary

∈ ×D M N such that these L training signals admit a sparse re-
presentation over the overcomplete dictionary D, i.e.

= + ∀ ( )y Dx w l, 1l l l

where xl and wl denote the sparse vector and the residual/noise
vector, respectively. Define ≜ [ … ]Y y yL1 , ≜ [ … ]X x xL1 , and

≜ [ … ]W w wL1 . The model (1) can be re-expressed as

= + ( )Y DX W . 2

Also, we write ≜ [ … ]D d dN1 , where each column of the dictionary,
dn, is called an atom.

In the following, we develop a Bayesian framework for learning
the overcomplete dictionary and sparse vectors. To promote sparse
representations, we assign a two-layer hierarchical Gaussian-in-
verse Gamma prior to X . The Gaussian-inverse Gamma prior is
one of the most popular sparsity-promoting priors which has been
widely used in compressed sensing [23,24,28]. Specifically, in the
first layer, X is assigned a Gaussian prior distribution

∏ ∏ ∏ ∏α α( | ) = ( ) = ( | )
( )= = = =
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where xnl denotes the (n, l)th entry of X , and α α≜ { }nl are non-
negative sparsity-controlling hyperparameters. The notation

α( | )−x 0,nl nl
1 denotes Gaussian distribution with zero mean and

variance α −
nl

1. The second layer specifies Gamma distributions as
hyperpriors over the hyperparameters α{ }nl , i.e.
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where ∫Γ( ) =
∞ − −a t e dta t

0
1 is the Gamma function. Here the nota-

tion α( )a bGamma ; ,nl denotes the Gamma distribution of αnl with
parameters a and b. To illustrate the sparsity-promoting property
of the Gaussian-inverse Gamma prior, we integrate out the hy-
perparameter αnl and obtain the marginal distribution of xnl,
which was shown to be a student-t distribution, i.e.

∫ α α α
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When b is very small, say = −b 10 6, the student-t distribution can
be reduced to
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We can easily see that (6) is a sparsity-promoting prior. Fig. 1 plots
the student-t distributions with different choices of a and b. We
see that the distribution has a sharp peak around zero when b is
sufficiently small. Also, a larger a results in a sharper peak, which
implies that a larger a leads to a more sparsity-encouraging prior.
In our paper, the parameters a and b are chosen to be a¼0.5 and

= −b 10 6.
In addition, in order to prevent the entries in the dictionary

from becoming infinitely large, we assume that the atoms of the
dictionary { }dn are mutually independent, and upon each atomwe
place a Gaussian prior, i.e.

∏ ∏ β( ) = ( ) = ( | )
( )= =

D d d 0 Ip p , ,
7n

N

n
n

N

n
1 1

where β is a parameter whose choice will be discussed later. The
noise { }wl are assumed independent multivariate Gaussian noise
with zero mean and covariance matrix γ( )I1/ , where the noise

L. Yang et al. / Signal Processing 130 (2017) 93–10494



Download English Version:

https://daneshyari.com/en/article/566239

Download Persian Version:

https://daneshyari.com/article/566239

Daneshyari.com

https://daneshyari.com/en/article/566239
https://daneshyari.com/article/566239
https://daneshyari.com

