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a b s t r a c t

This work treats the estimation of chroma features for harmonic audio signals using a sparse re-
construction framework. Chroma has been used for decades as a key tool in audio analysis, and is
typically formed using a periodogram-based approach that maps the fundamental frequency of a
musical tone to its corresponding chroma. Such an approach often leads to problems with tone am-
biguity. We address this ambiguity via sparse modeling, allowing us to appropriately penalize am-
biguous estimates while taking the harmonic structure of tonal audio into account. Furthermore, we
also allow for signals to have time-varying envelopes. Using a spline-based amplitude modulation of
the chroma dictionary, the presented estimator is able to model longer frames than what is conven-
tional for audio, as well as to model highly time-localized signals, and signals containing sudden bursts,
such as trumpet or trombone signals. Thus, we may retain more signal information as compared to
alternative methods. The performances of the proposed methods are evaluated by analyzing the
average estimation errors for synthetic signals, as compared to the Cramér–Rao lower bound, and by
visual inspection for estimates of real instrument signals. The results show strong visual clarity, as
compared to other commonly used methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Music is an art-form that people have enjoyed for millennia.
Perhaps music is even enjoyed more today, as the development of
personalized computers and smart telephones have enabled ubi-
quitous music listening, automatic identification of songs, and even
the chance for anyone to be a self-made DJ. When listening, learn-
ing, composing, mixing, and identifying music, there are a number
of musical features one may utilize (see, e.g., [3]). One of the fun-
damental building blocks in music, the musical note, is a periodic
sound, typically characterized by its pitch, timbre, intensity, and
duration. For transcription purposes, i.e., to separate one tone from
another, pitch serves as the common descriptor, and we will herein
use pitch and tone interchangeably. From a conventional perspec-
tive, pitch is measured on an ordinal scale, at which a pitch is hu-
manly perceived as either higher, lower, or the same as another
pitch. However, from the perspective of scientific audio analysis, a
pitch is quantified using an interval scale, in which its spectral
distribution of energy is modeled. A single pitch may be seen as a

superposition of several narrowband spectral peaks, which are ap-
proximately integer multiples of a fundamental frequency. Thus, we
refer to the group of frequencies as the pitch, and to each frequency
component as a partial harmonic, or, alternatively, just as a partial.
As for the fundamental frequency, it is either the lowest partial, or, if
that partial is missing, the smallest spectral distance between ad-
jacent partials. The number of harmonics in a certain pitch, as well
as the relative power between these, varies greatly over time and
between different sounds. Identifying pitches in a way similar to our
human perception has proved to be a difficult estimation problem.
Partly, this difficulty is due to coinciding frequency components
between certain pitches. For instance, two pitches, where one has
exactly twice the fundamental frequency of the other, are referred
to as being octave equivalent, as the relative distance by a factor of
two is called an octave. These will typically share a large number of
partials, often making an estimation procedure ambiguous between
octaves. To further complicate matters, other pairs of pitches may
also have many coinciding partials. These are typically found to-
gether in audio, an aspect which is referred to as harmony, since
they are perceptually pleasant to hear [4]. Jointly estimating several
pitches in a signal, i.e., multi-pitch estimation, has been thoroughly
examined in the literature (see, e.g., [5–7], and the references
therein). However, separating intricate combinations of frequency
components into multiple pitches often proves difficult. Typically,
issues arise when the complexity of the audio signal increases, such
that there are simultaneously two or more pitches with overlapping
spectral content present, for instance played by two or more
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instruments. In the Western musicological system, the frequency
interval corresponding to an octave is discretized into 12 intervals,
called semi-tones. By gathering all pitches with octave equivalence
to their respective semi-tone, these form 12 groups of pitches, called
chroma. As octave equivalent pitches share a large number of har-
monics, the notion of chroma is thus a method for grouping to-
gether those pitches which are perceived as most similar. Therefore,
chroma features are widely used in applications such as cover song
detection, transcription, and recommender systems (see, e.g., [8–
10]). Most methods for chroma estimation begin by obtaining es-
timates of the pitches in a signal, which are then mapped into their
respective chroma. Some of these take the harmonic structure into
account, and others do not. The commonly used method by Ellis
[11] is formed via a time-smoothed version of the short-time
Fourier transform (STFT), whereas the CP and CENS methods by
Müller and Ewert [12] use a filterbank approach, and the method in
[13] uses a sparse methodology. Neither of these take the harmonic
structure of pitches into account. Other approaches instead allow
for the harmonic structure, such as the method in [14], using a non-
negative least squares approach, the method presented in [15],
which uses a comb filtering technique, or the method in [16], in
which post-processing on the periodogram is performed. Most ex-
isting methods have in common that their estimates are not directly
formed from the actual data, but rather on a representation of these
measurements, such as the STFT or the magnitude of the period-
ogram. Herein, we propose to estimate the chroma using a sparse
model reconstruction framework in the time-domain, where ex-
plicit model orders are not required. The estimate is found as the
solution to a convex optimization problem. The solution is obtained
as a linear combination of an over-complete chroma-based set of
Fourier basis functions. Overfitting is avoided by introducing convex
penalties, thus promoting solutions having the sought chroma
structure. The model orders are thus set implicitly, using tuning
parameters, which may be obtained using cross-validation, or by
utilizing some simple heuristics. In this paper, we generalize upon
the work in [7], taking into account the chroma structure, as well as
allowing the frequency components to have time-varying ampli-
tudes. The proposed extension increases robustness, as it allows for
highly non-stationary signals, or signals with sudden bursts, like
trumpets, whose nature may easily be misinterpreted when using
ordinary chroma selection techniques. As in [17], the extended
model uses a spline basis to detail the time-varying envelope of the
signal, thereby enabling the amplitudes to evolve smoothly with
time. The theoretical performance of the proposed estimator is
verified using synthetic signals, which are compared to the Cramér–
Rao lower bound (CRLB) for the chroma signal model. The practical
use of the proposed estimator is illustrated using some excerpts
from a recorded trumpet signal, showing an increased visual per-
formance, as compared to some typical reference methods.

2. The chroma signal model

A sound signal typically contains a wide band of frequencies.
However, for tonal audio, it is well known that a predominant
part of the spectral energy is confined to a small number of fre-
quency locations. In this section, we will therefore describe a
framework for quantifying a musical tone from these frequencies.
From the harmonic model, we know that the ideal frequency
locations are placed at integer multiples of the lowest partial,
which is defined as the fundamental frequency. However, as
many sound sources produce tones far from ideal, such as, e.g.,
missing partials, or only having partials at odd integer multiples,
we will use a more rigorous definition as to avoid ambiguity.
Thus, if we assume to have a tone whose frequency components
are placed at some integer multiples of a frequency, we say that

the fundamental frequency is the largest frequency possible to
which the components can still be placed at integer multiples.
Without this definition, we may take any fundamental frequency,
divide it by two any number of times, and say that it is still the
fundamental frequency, only that the partials' multiples are re-
stricted to some high-numbered subset of the even number set.
And not only is this a mathematical issue, it is also a practical
estimation issue, in which the halving frequency may be chosen
instead of the fundamental. To that end, we state the tone's signal
model using its chroma, which collects all tones that are halvings
or doublings of each other. In fact, we state two different signal
models, one which assumes that the signal has frame-wise con-
stant amplitudes, and one which has amplitudes well modeled
using weights for a set of B-spline functions.

But first, in order to formalize the definition of a fundamental
frequency, let ψ ( ℓ)f , denote the function which describes the
frequency of the ℓth component. If this function is known, the
entire group of components, or partials, representing a musical
tone may be described by their fundamental frequency, f. Many
oscillating sources, such as, for instance, the human vocal tract and
stringed, or wind, instruments, emit tonal audio where the partials
are integer multiples of the fundamental, i.e.,

ψ ( ℓ) = ℓ ℓ ∈ ⊆ ( )f f, , 1

where denotes the index set of partials present in the signal.
However, for an arbitrary , the definition in (1) is not sufficient to
uniquely describe a pitch, as the set of frequencies may map to
infinitely many combinations of f and . For example, for any

∈ n , the two pitches

{ }ψ ψ= ( ℓ) ∈ ℓ ∈ ⊆ ( ) f f, : , 2

ψ ψ′ = ( ′ ℓ′) ′ = ℓ′ ∈ ′ = { ℓ ℓ ∈ }
( )

⎧⎨⎩
⎫⎬⎭f f

f
n

n, : , :
3

have identical frequency components. Therefore, some constraints
need to be imposed on . A common assumption for pitches is
spectral smoothness of the harmonics, i.e., that adjacent harmo-
nics should be of comparable magnitude [18]. This implies that
typically has few missing harmonics, and that n is as small as
possible. However, in some signals, the first harmonic might be
missing, so rather than defining the pitch as the signal's smallest
frequency component, we define the fundamental frequency more
rigorously.

Definition 1 (Fundamental frequency). If the set of frequencies in
a pitch may be described by (2), then for any ∈ n , the funda-
mental frequency is the largest ′ =f f n/ which fulfill (3), i.e., which
ensures that ′ = { ℓ ℓ ∈ } ⊆ n , .

The index set therefore plays a vital role in the definition of the
pitch frequency. Furthermore, because of the harmonic structure,
many different pitches will have coinciding partials. To illustrate
this, consider two pitches

{ }ψ ψ= ( ℓ) ∈ ℓ ∈ { … } ( )f f L, : , 1, 2, , 4

ψ ψ′ = ( ′ ℓ′) ′ = ℓ′ ∈ { … }
( )

⎧⎨⎩
⎫⎬⎭f f

f
n

nL, : , 1, 2, ,
5

which consist of all harmonics from ℓ = 1 up to L and nL, re-
spectively. Here, n may be a rational number, as long as (5) is
fulfilled. Indeed, both pitches are unique according to our defini-
tion. Still, they will share a large number of harmonics, in fact L of
them, asψ forms a perfect subset of ψ′, i.e., ψ ψ∈ ′. As sounds, they
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