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a b s t r a c t

We consider the problem of finding a sparse solution for an underdetermined linear system of equations
when the known parameters on both sides of the system are subject to perturbation. This problem is
particularly relevant to reconstruction in fully-perturbed compressive-sensing setups where both the
projected measurements of an unknown sparse vector and the knowledge of the associated projection
matrix are perturbed due to noise, error, mismatch, etc. We propose a new iterative algorithm for
tackling this problem. The proposed algorithm utilizes the proximal-gradient method to find a sparse
total least-squares solution by minimizing an ℓ1-regularized Rayleigh-quotient cost function. We de-
termine the step-size of the algorithm at each iteration using an adaptive rule accompanied by back-
tracking line search to improve the algorithm’s convergence speed and preserve its stability. The pro-
posed algorithm is considerably faster than a popular previously-proposed algorithm, which employs the
alternating-direction method and coordinate-descent iterations, as it requires significantly fewer com-
putations to deliver the same accuracy. We demonstrate the effectiveness of the proposed algorithm via
simulation results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The theory of compressive sensing states that an N-dimen-
sional vector that has only ≪K N nonzero entries can be re-
covered from its <M N projections when M is sufficiently set and
the projection matrix has certain properties. The projection matrix
is generally the product of a sensing matrix and a sparse re-
presentation matrix. Conventionally, when reconstructing the
unknown sparse vector, the projection matrix is assumed to be
perfectly known while the projections may be subject to pertur-
bation stemming from background noise or measurement error
[1–3]. In many applications, the perfect knowledge of the projec-
tion matrix is infeasible and only a perturbed version of it is
available for the reconstruction of the original sparse vector. Ex-
amples of such applications are grid-based approaches to time-
delay/Doppler-shift/direction-of-arrival/position estimation in
communications/radar systems or spectrum sensing in cognitive
radio networks [4–10], mobile electrocardiogram (ECG) monitor-
ing [11], X-ray imaging [12], plant biomass characterization [13],
hyperspectral unmixing [14], information security [15,16], and
high-dimensional linear regression [17].

The presence of perturbation in both the projection matrix and
the vector of projections has given rise to the so-called perturbed

compressive sensing (PCS) paradigm. The reconstruction of the
target sparse vector in PCS amounts to solving a fully-perturbed
underdetermined system of linear equations (SLE) under a sparsity
assumption. The effects of perturbation on the projection matrix
as well as the vector of projections have been analysed and re-
levant theoretical performance bounds have been reported in
several works including [18–21].

The total least-squares (TLS) method is an effective way of
solving a fully-perturbed SLE, albeit disregarding any possible
sparseness in the target solution vector. The TLS is a linear fitting
technique that accounts for perturbations on both sides of an SLE
[22–26]. An augmented matrix can be formed by concatenating
the perturbed parameter matrix of the left-hand side of an SLE
with the perturbed parameter vector of its right-hand side. The
optimal TLS solution to the SLE is related to the singular vector of
this augmented matrix that corresponds to its smallest singular
value [24]. This singular value is the minimum value for the Ray-
leigh-quotient of the covariance of the augmented matrix [25–28].
Besides, it is appreciated that adding an ℓ1-norm penalty as a
regularization term to a least-squares cost function promotes
sparsity in its minimizer [29]. Therefore, one can expect to attain a
sparse solution to a fully-perturbed underdetermined SLE by
combining the concepts of TLS fitting and ℓ1-norm regularization.
In [4], two algorithms based on ℓ1-regularized TLS estimation are
proposed, one of which is near-optimal and the other is sub-
optimal but with reduced complexity.
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The matrix-uncertainty generalized approximate message-
passing (MU-GAMP) algorithm, proposed in [30], takes a Bayesian
estimation approach to solve the PCS recovery problem. It is based
on the generalized approximate message-passing (GAMP) algo-
rithm [31,32] and exploits the prior knowledge about the prob-
ability distribution of the target sparse vector. Another popular
approach for reconstruction in PCS is to employ a greedy strategy
to enforce sparsity on the TLS (or any other perturbation-com-
pensated) estimate. Some of the greedy PCS reconstruction algo-
rithms combine the TLS estimation with a greedy support-detec-
tion method; others modify the classical greedy compressive-
sensing reconstruction algorithms, such as the orthogonal
matching pursuit algorithm, so that they can account for the
perturbation in the projection matrix as well as the perturbation
in the vector of projections. The algorithms proposed in [6,11,33–
35] are a few examples. These algorithms along with those based
on the ℓ1-regularized TLS estimation are among the most com-
putationally efficient reconstruction algorithms for PCS.

In this paper, we propose a new reconstruction algorithm for
PCS that finds a sparse total least-squares estimate by minimizing
an ℓ1-regularized Rayleigh-quotient cost function. To this end, we
utilize the proximal-gradient method, which is also known as the
forward-backward splitting method, [36–38] and determine its
step-sizes through an adaptive scheme accompanied by back-
tracking line search. The proximal-gradient method is suitable for
minimizing composite cost functions comprised of two additive
terms, one of which is differentiable and the other is convex and
admits a proximity operator [39]. It is a two-stage iterative algo-
rithm that addresses each term in the composite cost function
separately. At each iteration, it moves the estimate along the op-
posite direction of the gradient of the differentiable term (forward
gradient-descent step), then adjusts the estimate by applying the
proximity operator of the other term (backward gradient-descent
step) [36]. The proximal-gradient method is a simple practical
algorithm that can often be implemented with relatively low
complexity.

We assume that the perturbations have Gaussian distribution.
The case of perturbations with Poisson distribution has been stu-
died in [12]. Thanks to the computational efficiency of the prox-
imal-gradient method, the computational complexity of the pro-
posed algorithm is of order ( )NK to ( )N2 at each iteration,
depending on the sparseness of the estimates. Consequently, the
proposed algorithm demands significantly fewer computations
than its closest contender, the suboptimal algorithm of [4], which
has a per-iteration computational complexity order of ( )NMK to

( )N M2 . Notably, we achieve this improvement in complexity with
no sacrifice of estimation accuracy.

We provide simulation examples to examine the performance
of the proposed algorithm in comparison with the algorithm of [4].
The simulation results corroborate the efficacy of the proposed
algorithm.

2. Problem

We consider the problem of finding an estimate of the vector
∈ ×xo

N 1 as the solution of the following underdetermined system
of linear equations:

= ( )A x b . 1o o o

The matrix ∈ ×Ao
M N has fewer rows than columns, i.e., <M N , and

the target vector xo is sparse with <K M nonzero entries. We do
not observe Ao and ∈ ×bo

M 1 directly. Instead, we have access to
their perturbed versions A and b, respectively, which are given by

= − = − ( )A A E b b eand 2o o o o

where ∈ ×Eo
M N and ∈ ×eo

M 1 are unknown perturbations. The
source of perturbation can be background noise, measurement
error, quantization error, coarse discretization of the parameter
space, sampling jitter, mismatch between the true values and the
existing knowledge about them, etc. Substituting (2) into (1) gives
the following errors-in-variables equation:

( ) ( )+ = +A E x b e .o o o

In the context of compressive sensing, Ao is known as the
unperturbed projection or measurement matrix and bo is called
the vector of unperturbed projections or measurements. The
parameters with index o are unobservable (hidden). We are pri-
marily interested in estimating (recovering) the sparse target
vector xo from the known but perturbed parameters A and b. As
shown in [4], this problem, i.e., reconstruction in PCS, can be cast
as an ℓ1-regularized total least-squares problem where estimates
of xo, eo, and Eo are found by solving

( )
( )
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Here, λ > 0 is the regularization parameter while ⋅ 2, ⋅ F , and ⋅ 1

stand for ℓ2, Frobenius, and ℓ1 norms, respectively. The estimates
for xo, eo, and Eo produced by solving (3) are optimal in the
maximum a posteriori (MAP) sense when the entries of xo are
independently drawn from a zero-mean common Laplace dis-
tribution with parameter λ2/ and the entries of eo and Eo are
independent identically-distributed Gaussian with zero mean and
equal variance. According to Lemma 1 of [4], the constrained op-
timization problem (3) is equivalent to two unconstrained opti-
mization problems, one involving the variables x and E as

( )+ − + +λ ( )
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and the other involving only x as
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In [4], two iterative algorithms are proposed for solving the
ℓ1-regularized total least-squares problem. The first algorithm
solves an equivalent form of (5) expressed as

δ
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where δ is an estimate of the ℓ1-norm of the optimal solution
evaluated through a cross-validation scheme. This algorithm has
inner and outer iteration loops that are based on a variant of the
branch-and-bound method [40] and the bisection method [41],
respectively. Although this algorithm is guaranteed to converge to
an arbitrarily small neighbourhood of the global solution of (6), it
is computationally expensive as its complexity is not necessarily of
polynomial order.

The second algorithm proposed in [4] solves (4) using an al-
ternating-direction approach. It successively alternates between
two steps: 1) estimating xo given the last estimate of Eo using
coordinate-descent iterations and 2) estimating Eo given the last
estimate of xo by solving a straightforward quadratic subproblem.
This algorithm, which we will refer to as the alternating-direction
coordinate-descent (AD-CD) algorithm, is only guaranteed to
converge to a local minimum of the cost function in (4) and not
necessarily to its global minimum. However, it is computationally
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