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a b s t r a c t

This primer article focuses on the basic reproduction number, ℛ0, for infectious diseases,
and other reproduction numbers related toℛ0 that are useful in guiding control strategies.
Beginning with a simple population model, the concept is developed for a threshold value
of ℛ0 determining whether or not the disease dies out. The next generation matrix
method of calculating ℛ0 in a compartmental model is described and illustrated. To
address control strategies, type and target reproduction numbers are defined, as well as
sensitivity and elasticity indices. These theoretical ideas are then applied to models that
are formulated for West Nile virus in birds (a vector-borne disease), cholera in humans (a
disease with two transmission pathways), anthrax in animals (a disease that can be spread
by dead carcasses and spores), and Zika in humans (spread by mosquitoes and sexual
contacts). Some parameter values from literature data are used to illustrate the results.
Finally, references for other ways to calculate ℛ0 are given. These are useful for more
complicated models that, for example, take account of variations in environmental fluc-
tuation or stochasticity.
Crown Copyright © 2017 Production and hosting by Elsevier B.V. on behalf of KeAi Com-
munications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Infectious diseases continue to debilitate and to cause death in humans and animals, with new disease-causing pathogens
emerging and old pathogens reemerging or evolving. For example, viruses give rise to influenza, measles andWest Nile virus,
bacteria give rise to anthrax, salmonella, chlamydia and cholera, and protozoa give rise to malaria and trypanosomiasis
(sleeping sickness). Disease may be passed directly from person to person by respiratory droplets (e.g., measles), via body
secretions (e.g., chlamydia), by biting tsetse flies (e.g., trypanosomiasis) or mosquitoes (e.g., malaria), or by ingestion in food
or water (e.g., cholera). Some diseases can be controlled by vaccines, antibiotics, antiviral drugs, reduction in vector pop-
ulations, increased sanitation or behavioral changes. In order to consider control strategies for a particular disease, it is
essential to know features of the pathogen, the mode of transmission and other epidemiological details, since as indicated by
the above examples, these differ greatly between diseases.

Mathematical modelling can play an important role in helping to quantify possible disease control strategies by focusing
on the important aspects of a disease, determining threshold quantities for disease survival, and evaluating the effect of
particular control strategies. A very important threshold quantity is the basic reproduction number, sometimes called the basic
reproductive number or basic reproductive ratio (Heffernan, Smith, & Wahl, 2005), which is usually denoted by ℛ0. The
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epidemiological definition ofℛ0 is the average number of secondary cases produced by one infected individual introduced into a
population of susceptible individuals, where an infected individual has acquired the disease, and susceptible individuals are
healthy but can acquire the disease.

In reality, the value ofℛ0 for a specific disease depends onmany variables, such as location and density of population. For a
few specific diseases, Table 1 gives estimates of ℛ0 gleaned from data in the literature.

The aim of this review is to elaborate onmathematical ways of findingℛ0 for ODE disease models in a population, bearing
in mind the epidemiological meaning of ℛ0, and to demonstrate how this and other reproduction numbers can be used to
guide control strategies. Section 2 introduces simple models that establish notation and serve as background for later sec-
tions. The next generation matrix method to theoretically calculateℛ0 for ODEmodels is presented in Section 3. In Section 4,
the use ofℛ0 and other reproduction numbers to guide control strategies is shown by defining elasticity indices, and type and
target reproduction numbers. Sections 5, 6, and 7 apply these ideas to models specific for West Nile virus in birds, cholera in
humans, and anthrax in animals, respectively. As suggested by a referee, Zika models are briefly discussed in Section 8. For
these diseases, numerical values for model parameters are taken from the literature, with references given for these and for
proofs (which are not detailed here). A final section, Section 9, gives references to other approaches for calculating ℛ0, in
particular for models formulated in other ways. Inevitably the reference list is incomplete as there have recently been many
articles on infectious diseases (it has been said that there is an epidemic of disease models), many of which determine a basic
or control reproduction number.

2. Simple compartmental disease models

2.1. SIR epidemic model

To beginwith a simple model, assume that eachmember of a population is either susceptible, infectious (infected with the
disease) or recovered from the disease with life-long immunity. If the disease is short lived compared with the population
lifetime, then demography can be ignored. Such a model may be appropriate as a very simple model for seasonal influenza,
ignoring features such as immunity from past infections. Let S; I;R denote the number of susceptible, infectious, recovered
individuals at time t. Transmission of influenza is airborne or by respiratory secretions on hands, so this is often modeled by
mass action, namely a term bSI, where b is the disease transmission rate constant and bI is the force of infection. Let 1=g
denote the mean infectious time (about 5 days for influenza), thus g>0 is the recovery rate, and let f denote the fraction of
infectious individuals who recover from the disease (thus the fraction 1� f die from the disease). The flow diagram for the
disease dynamics with compartments S, I and R is given in Fig. 1.

Ordinary differential equations (ODEs) for this SIR model are given by

dS
dt

¼ �bSI;
dI
dt

¼ bSI � gI;
dR
dt

¼ fgI:

Initially Sð0Þ ¼ S0; Ið0Þ>0 with Ið0Þ≪Sð0Þ, and Rð0Þ ¼ 0. There is a disease free equilibrium (DFE) with ðS; I;RÞ ¼ ðS0;0;0Þ.
Focusing on the I equation, the initial behavior is governed by the sign of bS0 � g, or equivalently bS0

g � 1. This leads to the

definition ofℛ0 ¼ bS0
g , with the DFE locally asymptotically stable (LAS) ifℛ0 <1, but unstable ifℛ0 >1. Thisℛ0 is the product

of the transmission rate, the mean infectious time and S0, and clearly fits with the epidemiological definition of ℛ0 given in
the Introduction. Note that ℛ0 is independent of the fraction dying from the disease. From the dynamics of the system, if
ℛ0 <1, then the number of infectious individuals decreases monotonically to 0; whereas if ℛ0 >1, then this number first
increases (before tending to zero); thus ℛ0 ¼ 1 acts as a sharp threshold between the disease dying out or causing an
epidemic.

Table 1
Estimated Mean Values of ℛ0 from Data.

Disease outbreak and location ℛ0 Reference

Smallpox in Indian subcont. (1968e73) 4.5 Anderson and May (1991)
Poliomyelitis in Europe (1955e60) 6 Anderson and May (1991)
Measles in Ghana (1960e68) 14.5 Anderson and May (1991)
SARS epidemic in (2002e03) 3.5 Gumel et al. (2004)
1918 Spanish influenza in Geneva
Spring wave 1.5 Chowell, Ammon, Hengartner, and Hyman (2006)
Fall wave 3.8 Chowell et al. (2006)

H2N2 influenza pandemic in US (1957) 1.68 Longini, Halloran, Nizam, and Yang (2004)
H1N1 influenza in South Africa (2009) 1.33 White, Archer, and Pagano (2013)
Ebola in Guinea (2014) 1.51 Althaus (2014)
Zika in South America (2015e16) 2.06 Gao et al. (2016)
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