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a b s t r a c t

Mathematical models provide a quantitative framework with which scientists can assess
hypotheses on the potential underlying mechanisms that explain patterns in observed
data at different spatial and temporal scales, generate estimates of key kinetic param-
eters, assess the impact of interventions, optimize the impact of control strategies, and
generate forecasts. We review and illustrate a simple data assimilation framework for
calibrating mathematical models based on ordinary differential equation models using
time series data describing the temporal progression of case counts relating, for
instance, to population growth or infectious disease transmission dynamics. In contrast
to Bayesian estimation approaches that always raise the question of how to set priors for
the parameters, this frequentist approach relies on modeling the error structure in the
data. We discuss issues related to parameter identifiability, uncertainty quantification
and propagation as well as model performance and forecasts along examples based on
phenomenological and mechanistic models parameterized using simulated and real
datasets.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Emerging and re-emerging infectious diseases are undoubtedly one of humankind’s most important health and se-
curity risks (Fauci &Morens, 2016). As epidemic threats increase so is the potential impact of mathematical and statistical
inference and simulation approaches to guide prevention and mitigation plans. As the recent 2013e2016 Ebola epidemic
exemplified, an infectious disease outbreak often forces public health officials to make key decisions to mitigate the
outbreak in a changing environment where multiple factors positively or negatively impact local disease transmission
(Chowell et al., 2017). Hence, public health officials are often interested in practical yet mathematically rigorous and
computationally efficient approaches that comprehensively assimilate data and model uncertainty to 1) generate
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estimates of key transmission parameters, 2) assess the impact of control interventions (vaccination campaigns, behavior
changes), 3) test hypotheses, 4) evaluate how behavior changes affect transmission dynamics, 5) gain insight to the
contribution of different transmission pathways, 6) optimize the impact of control strategies, and 7) generate short and
long-term forecasts, just to name a few.

Mathematical models provide a quantitative framework with which scientists can assess hypotheses on the potential
underlying mechanisms that explain patterns in the observed data at different spatial and temporal scales. Models vary in
their complexity in terms of the number of variables and parameters that characterize the dynamic states of the system,
in their spatial and temporal resolution (e.g., discrete vs. continuous time), and in their design (e.g., deterministic or
stochastic). While agent-based models, formulated in terms of characteristics and interactions among individual agents,
have become increasingly used to model detailed processes often occurring at multiple scales (e.g., within host vs.
population level), models based on systems of ordinary differential equations are widely used in the biological and social
sciences. These dynamic models are specified by a set of equations and their parameters that together quantify the
spatial-temporal states of the system via a set of interrelated dynamic quantities (e.g, viral load, susceptibility levels,
disease prevalence) (Banks et al., 2009).

In this paper we review and illustrate a simple data assimilation framework for connecting ordinary differential equation
models to time series data describing the temporal progression of case counts relating to population growth or infectious
disease transmission dynamics (e.g, daily incident cases). This frequentist approach relies on modeling the error structure in
the data unlike Bayesian approaches which always raise the question of how to set priors for the parameters. We present
examples based on phenomenological and mechanistic models of disease transmission dynamics together with simulated
and real datasets. We discuss issues related to parameter identifiability, uncertainty quantification and propagation as well as
model performance and forecasts.

2. Mathematical models

The general form of a dynamic model composed by a system of h ordinary differential equations is given by

_x1ðtÞ ¼ f1ðx1; x2;…; xh;QÞ
_x2ðtÞ ¼ f2ðx1; x2;…; xh;QÞ
«
_xhðtÞ ¼ fhðx1; x2;…; xh;QÞ

where _xi denotes the rate of change of the system states xi where i ¼ 1;2;…h and Q ¼ ðq1; q2;…; qmÞ is the set of model
parameters.

In general, the complexity of a model is a function of the number of parameters that are needed to characterize the states
of the system and the spectrum of the dynamics that can be recovered from the model (e.g., number of equilibrium points,
oscillations, bifurcations, chaos). A trade-off exists between the level of model complexity and the ability to reliably
parameterize the model with available data.

In the next sections we briefly discuss differences between phenomenological and mechanistic models along specific
examples that will become useful to illustrate methodology in the subsequent sections.

2.1. Phenomenological models

Phenomenological models provide an empirical approachwithout a specific basis on the physical laws ormechanisms that
give rise to the observed patterns in the data (Chowell et al., 2016a). Thus, these types of models emphasize the reproduc-
ibility of empirical observations using simple models. Next, we describe two useful models to characterize epidemic growth
patterns namely the generalized-growth model (GGM) and the generalized Richards model (GRM).

2.1.1. The generalized-growth mode (GGM)
This is a phenomenological model that has proved useful to characterize and forecast early epidemic growth patterns

(Chowell & Viboud, 2016; Viboud, Simonsen, & Chowell, 2016). In particular, previous analyses highlighted the presence of
early sub-exponential growth patterns in infectious disease data across a diversity of disease outbreaks (Viboud et al., 2016).
The generalized-growth model allows relaxing the assumption of exponential growth via a “scaling of growth” parameter, p.
The model is given by the following differential equation:

C0ðtÞ ¼ rCpðtÞ (1)

where C0ðtÞ describes the incidence growth phase over time t, the solution CðtÞ describes the cumulative number of cases at
time t, r is a positive parameter denoting the growth rate, and p, the “deceleration of growth” parameter varied between 0 and
1. If p ¼ 0, this equation describes constant incidence over time and the cumulative number of cases grows linearly while p ¼

G. Chowell / Infectious Disease Modelling 2 (2017) 379e398380



Download English Version:

https://daneshyari.com/en/article/5662869

Download Persian Version:

https://daneshyari.com/article/5662869

Daneshyari.com

https://daneshyari.com/en/article/5662869
https://daneshyari.com/article/5662869
https://daneshyari.com

