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a b s t r a c t

Some mathematical methods for formulation and numerical simulation of stochastic
epidemic models are presented. Specifically, models are formulated for continuous-time
Markov chains and stochastic differential equations. Some well-known examples are
used for illustration such as an SIR epidemic model and a host-vector malaria model.
Analytical methods for approximating the probability of a disease outbreak are also
discussed.
© 2017 KeAi Communications Co., Ltd. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

1. Introduction

The intent of this primer is to provide a brief introduction to the formulation, numerical simulation, and analysis of
stochastic epidemic models for a newcomer to this field. A background in modeling with ordinary differential equations
(ODEs) is assumed. The ODE epidemic models serve as a framework for formulating analogous stochastic models and as a
source of comparisonwith the stochastic models. This primer is restricted to two types of stochastic settings, continuous-time
Markov chains (CTMCs) and stochastic differential equations (SDEs). Some well-known examples are used for illustration
such as an SIR epidemic model and a host-vector malaria model. For additional examples and information on stochastic
epidemic models and stochastic modeling in general, consult the textbooks and papers listed in the references, e.g., (E. Allen
2007; Allen 2008, 2010, 2015; E. Allen, Allen, Arciniega,& Greenwood, 2008; Andersson& Britton, 2000; Bailey, 1975; Britton,
2010; Daley& Gani, 1999; Durrett, 1999; Greenwood et al., 2009; Isham et al., 2005; Jagers, 1975; Karlin & Taylor, 1975, 1981).

Stochastic modeling of epidemics is important when the number of infectious individuals is small or when the variability
in transmission, recovery, births, deaths, or the environment impacts the epidemic outcome. The variability associated with
individual dynamics such as transmission, recovery, births or deaths is often referred to as demographic variability. The
variability associated with the environment such as conditions related to terrestrial or aquatic settings is referred to as
environmental variability. Environmental variability is especially important in modeling zoonotic infectious diseases, vector-
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borne diseases, and waterborne diseases (e.g., Ebola, avian influenza, malaria, and cholera) (Altizer, Ostfeld, Johnston, Kutz, &
Harvell, 2013; Jutla et al., 2013; Wu, Lu, Zhou, Chen, & Xu, 2016). In this primer, the emphasis is on demographic variability.

In CTMCs and SDEs, the time variable is continuous, t2½0;∞Þ, but the state variables are either discrete (CTMC) or
continuous (SDEs). In the following sections, these two stochastic processes are formulated for the well-known SIR (Sus-
ceptible-Infectious-Recovered) epidemic model and the Ross malaria host-vector model. The Gillespie algorithm and the
Euler-Maruyama numerical method are described for the two types of stochastic processes. In addition, some analytical
methods from branching processes that are related to the CTMC models are used to approximate the probability of an
outbreak. In the last section, some stochastic methods for modeling environmental variability are presented.

2. SIR deterministic epidemic model

In the SIR deterministic model, SðtÞ, IðtÞ, and RðtÞ are the number of susceptible, infectious, and recovered individuals,
respectively. In the simplest model, there are no births and deaths, only infection and recovery:

dS
dt

¼ �bI
S
N

dI
dt

¼ bI
S
N
� gI

dR
dt

¼ gI;

(1)

where the total population size is constant, SðtÞ þ IðtÞ þ RðtÞ ¼ N. The disease-free equilibrium is S ¼ N and I ¼ R ¼ 0. The
basic reproduction numberR0 ¼ b=gwhich is equal to the ratio of the transmission rate b and the recovery rate g, determines
the epidemic outcome when Sð0ÞzN. If Ið0Þ>0 and R0Sð0Þ=N>1, then the number of infectious individuals increases, an
outbreak, and if R0Sð0Þ=N<1, the number of infectious individuals decrease. As RðtÞ ¼ N � SðtÞ � IðtÞ, system (1) can be
simplified to two equations for SðtÞ and IðtÞ:

The stochastic formulation of the CTMC and SDE models requires defining two random variables for S and I whose dy-
namics depend on the probabilities of the two events: infection and recovery. For simplicity, the same notation is used in the
stochastic and the deterministic formulations.

3. SIR continuous time Markov chain

3.1. Formulation

The discrete random variables for the SIR CTMC model satisfy

SðtÞ; IðtÞ2f0;1;2;…;Ng;

where t2½0;∞Þ. The lower case s and i denote the values of the discrete random variables from the set f0;1;2;…;Ng. The
transition probabilities associated with the stochastic process are defined for a small period of time Dt >0:

pðs;iÞ;ðsþk;iþjÞðDtÞ ¼ ℙððSðt þ DtÞ; Iðt þ DtÞÞ ¼ ðsþ k; iþ jÞjðSðtÞ; IðtÞÞ ¼ ðs; iÞÞ:

The transition probabilities depend on the time between events Dt but not on the specific time t, a time-homogeneous
process. In addition, given the current state of the process at time t, the future state of the process at time t þ Dt, for any
Dt >0, does not depend on times prior to t, known as the Markov property. For comparison purposes, the transition prob-
abilities are defined in terms of the rates in the SIR ODE model:

pðs;iÞ;ðsþk;iþjÞðDtÞ ¼

8>>>>>>>>>><>>>>>>>>>>:
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oðDtÞ; otherwise:

(2)

Summarized in Table 1 are the changes, DSðtÞ ¼ Sðt þ DtÞ � SðtÞ and DIðtÞ ¼ Iðt þ DtÞ � IðtÞ, associated with the two events,
infection and recovery.

Given Sð0Þ ¼ N � i and Ið0Þ ¼ i>0, the epidemic ends at time t, when IðtÞ ¼ 0. The states ðS; IÞ, where I ¼ 0 are referred to
as absorbing states; the epidemic stops when an absorbing state is reached. The absorbing states are the states ðs; iÞwith i ¼ 0.
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