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Background: Gene regulatory networks are complex dynamic systems and the reverse-
engineering of such networks from high-dimensional time course transcriptomic data
have attracted researchers from various fields. It is also interesting and important to study
the behavior of the reconstructed networks on the basis of dynamic models and the
biological mechanisms. We focus on the gene regulatory networks reconstructed using the
ordinary differential equation (ODE) modelling approach and investigate the properties of
these networks.
Results: Controllability and stability analyses are conducted for the reconstructed gene
response networks of 17 influenza infected subjects based on ODE models. Symptomatic
subjects tend to have larger numbers of driver nodes, higher proportions of critical links
and lower proportions of redundant links than asymptomatic subjects. We also show that
the degree distribution, rather than the structure of networks, plays an important role in
controlling the network in response to influenza infection. In addition, we find that the
stability of high-dimensional networks is very sensitive to randomness in the recon-
structed systems brought by errors in measurements and parameter estimation.
Conclusions: The gene response networks of asymptomatic subjects are easier to be
controlled than those of symptomatic subjects. This may indicate that the regulatory
systems of asymptomatic subjects are easier to recover from disease stimulations, so these
subjects are less likely to develop symptoms. Our results also suggest that stability
constraint should be considered in the modelling of high-dimensional networks and the
estimation of network parameters.
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1. Background

Genes, proteins and metabolites in a cell interact with each other and also with the environment, forming large complex
networks.When a cell responds to different stimulus, different sets of genes are expressed and these genes and their products
may form distinct regulatory networks (Arbeitman et al., 2002; Spellman et al., 1998). In recent years, various analytical tools
and methods have been developed to reconstruct the gene regulatory networks (GRNs) from experimental data and many of
these methods are based on high-dimensional time course gene expression data. Examples include Boolean networks
(Baranzini et al., 2004; Kauffman, 1969; Shmulevich, Dougherty, Kim, & Zhang, 2002), information theory models (Steuer,
Kurths, Daub, Weise, & Selbig, 2002; Stuart, Segal, Koller, & Kim, 2003), graphical Gaussian models (Schafer & Strimmer,
2005), graphical Granger causality (Shojaie & Michailidis, 2010), dynamic Bayesian networks (DBN) (Husmeier, 2003;
Murphy & Mian, 1999; Perrin, Ralaivola, Mazurie, Bottani, & Mallet, 2003; Zou & Conzen, 2005), vector autoregressive
(VAR) models (Charbonnier, Chiquet,& Ambroise, 2010; Opgen-Rhein& Strimmer, 2007; Shimamura et al., 2009), state space
models (Hirose et al., 2008; Kojima et al., 2010; Rangel et al., 2004) and differential equation models (Chen, Wang, Tseng,
Huang, & Kao, 2005; Golightly & Wilkinson, 2006; Holter, Maritan, Cieplak, Fedoroff, & Banavar, 2001; Lu, Liang, Li, & Wu,
2011; Yeung, Tegn�er, & Collins, 2002; de Jong, 2002).

Among the aforementioned network modelling approaches, we focus on the ordinary differential equation (ODE) model.
An ODE model is formed by taking the derivative of a gene expression as a function of expression levels of all related genes,
which results in a direct graph model and the dynamic feature of GRNs is automatically captured and quantified. Recently, Lu
et al. (2011). andWu, Liu, Qiu,&Wu (2014). proposed a novel pipeline to reverse engineer genome-wide dynamic GRNs from
time course gene expression data using high-dimensional ODE models. To deal with the high-dimensionality of the genome-
wide GRN, genes are clustered with similar expression patterns into co-expressed modules and module-based dynamic ODE
networks are constructed. The advanced parameter estimation method for ODE models is coupled with statistical variable
selection techniques to identify the sparse structure of the network. A series of cutting-edge statistical techniques are
combined to efficiently reduce the dimension of the network reconstruction and account for the correlations of time series
expression measurements from the same gene. In addition, it also allows us to perform model selection and parameter
estimation of the ODEmodel for one equation at a time, which is highly efficient in reconstructing large-scale networks from a
computational perspective.

In this paper, we focus on the analysis of the networks identified using the data-driven pipeline developed in Lu et al.
(2011) and Wu et al. (2014). Specifically, we are interested in the parameter estimation, the controllability analysis and
stability analysis of the reconstructed ODE networks. Consider a K dimensional dynamic network by the following ODEmodel

X0ðtÞ ¼ b0 þ AXðtÞ þ BVðtÞ; Xðt ¼ t0Þ ¼ X0;
YðtÞ ¼ CXðtÞ þWðtÞ; (1)

whereXðtÞ ¼ ðX1ðtÞ;…;XKðtÞÞT is the vector of state variables;X0ðtÞ indicates the derivative ofXðtÞ;VðtÞ ¼ ðV1ðtÞ;…;VmðtÞÞT is
the vector of input variables such as the stimulation variables to the gene regulatory network (e.g., the viral load in our
influenza infection example); A ¼ ðakiÞk;i¼1;…;K is the system matrix that quantifies the regulatory effects between network
components; B ¼ ðbkjÞk¼1;…;K;j¼1;…;m is the input matrix that represents the effect of the input variables; parameters b0 and X0
are the intercept and initial values, respectively; YðtÞ ¼ ðY1ðtÞ;…;YKðtÞÞT is the vector of observation variables and the
observation matrix C is an identity matrix for our gene regulatory network examples (the expression levels for all genes are
measured by microarray or RNA-Seq techniques); and W(t) represents the measurement error, which is usually assumed to
follow a Gaussian distribution with mean zero. For simplicity of presentation, we consider model (1) with only one input
variable, i.e., m¼1. But the methods presented in this paper can be easily extended to cases where m>1.

In biological systems, most nodes are only directly connected to a small number of other nodes, so it is reasonable to
assume that the system matrix A is a sparse matrix. In this work, we further assume that the structure and nonzero com-
ponents of A have already been identified and estimated. Since the network parameters estimated during the network
structure identification step are based on each differential equation separately, they may not be accurate and need further
refinement (Lu et al., 2011). This refined estimation needs to be done very carefully, as the estimated parameters will be
utilized in the following controllability and stability analysis. We propose to use a trust-region-reflective algorithmwith box
constraint (Branch, Coleman, & Li, 1999; Byrd, Schnabel, Shultz, 1988; Mor�e & Sorensen, 1983; Coleman and Li, 1994, 1996) in
the parameter estimation (refinement) step. Moreover, we take advantage of the matrix sparsity of A along with a cost-less
Jacobian evaluation so that the algorithm is most efficient for sparse linear ODE parameter estimation.

The ability of controlling complex biological networks is of paramount importance since it enables us to obtain a deeper
understanding of the networks. A dynamic system is controllable, if and only if an arbitrary initial state is steerable to an
arbitrary desired final state within a finite time interval using the external inputs (Klamka, 2013). Controllability is a generic
characteristic of the dynamic system and is also strongly related to stability and stabilizability (Klamka, 1991). The main goal
of controllability analysis is to assess whether a dynamic system is controllable and how to control the system state to the
desired state effectively (Kaczorek, 1992). Controllability analysis has also been proven to be especially useful for studying
dynamic systems in many different fields, including biology (Rajapakse, Groudine, & Mesbahi, 2011), engineer (Reehorst,
Chung, Potapczuk, & Choo, 2000), chemical processes (Bahri, Bandoni, & Romagnoli, 1997) and physics (Wang, Ni, Lai, &
Grebogi, 2012) and so on. In recent years, studies of controllability have been applied in a variety of biological systems,
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