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Empirical Mode Decomposition (EMD) is a method to decompose signals into Intrinsic
Mode Functions (IMFs) to be analyzed in terms of instantaneous frequencies and
amplitudes. By comparing the phase spectra of IMFs, we observed that a subset of them
contains more stochastic influences while the other is predominantly deterministic.
Considering this observation, we claim that IMFs can be combined to form two additive
components: one deterministic and another stochastic. Having both components separated,
researchers can improve data modeling as well as forecasting. In this context, this paper
presents a new approach to separate deterministic from stochastic influences embedded in
signals, considering the mutual information contained in phase spectra of consecutive IMFs.
As previous step of this study, we also proved that EMD works as a filter bank.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Empirical Mode Decomposition (EMD) method was
designed to decompose signals into components referred
to as Intrinsic Mode Functions (IMFs) in order to study and
analyze their instantaneous frequencies and amplitudes by
using the Hilbert Spectral Analysis (HSA) [1]. Among the
main advantages of EMD are the extraction of a reduced
number of components in comparison to other techniques
and its application to linear and nonlinear signals [1].

By analyzing the EMD results, we empirically observed
that this method produces IMFs at different frequency
bandwidths. This same observation also caught the
attention of other researchers such as Flandrin et al. [2],
who studied EMD using numerical experiments. From this
empirical observation, in this paper we prove that EMD
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works as a filter bank. While conducting this proof and
experimenting with EMD on synthetic and real-world
datasets we also confirmed that EMD separates determi-
nistic from stochastic influences embedded in signals.

While experimenting of real-world data we noticed
high-frequency IMFs could be better modeled using Sto-
chastic tools [3], while low-frequency ones could be better
modeled using Dynamical System tools [4]. In fact, fre-
quency by itself cannot be used as an indicator of stochas-
ticity or determinism; however, we observed that the way
EMD produces IMFs could help to separate deterministic
from stochastic components. In order to proceed with this
separation, we designed a new approach that compares
the phase spectra (complex Fourier coefficients) between
consecutive IMFs to measure their similarities. As a con-
sequence, similar IMFs share some degree of information
what allows us to assume them as deterministic while
dissimilar ones are taken as stochastic.

This phase spectra comparison was performed using
the Mutual Information method (MI), which measures the
dependency between variables. Experiments performed
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Fig. 1. The noisy signal x(t) = sin (2zt)+«(0, 1) is shown in plot (a). Plots from (b) to (i) show all IMFs h,(t) extracted at each iteration from the signal x(t)

using the EMD method. The last plot (j) shows the residue r(t).

on signals with additive noise confirmed that the first
high-frequency IMFs produced by the EMD method pre-
sent lower levels of mutual information, i.e., they usually
share almost no information; however, as next IMFs were
produced (at lower frequencies), higher mutual informa-
tion was observed. In this sense, when two IMFs are
stochastic, no relevant information is shared between
them and, consequently, their mutual information is low.
On the other hand, higher levels of mutual information
point out the presence of similar influences which we
assume as determinism.

Considering this analysis, we state that the application
of EMD on signals provides IMFs that can be separated into
two classes: one with lower mutual information and
another presenting higher mutual information levels. The
first class corresponds to stochastic influences, whereas
the second represents deterministic ones. Having the
deterministic and the stochastic components separated,
one can improve: (i) the modeling and prediction of each
individual component [5] as well as (ii) the filtering, once
noise is typically related to stochastic processes [6,7].

The remainder of this paper is organized as follows. In
Section 2, we present an overview on the Empirical Mode
Decomposition (EMD) method. The process of extracting
components from signals, using EMD, was analyzed in
Section 3 considering instantaneous frequencies and phase

spectra. This analysis has motivated the development of
this work, which starts discussing the Nyquist-Shannon
sampling theorem in Section 4. This theorem was consid-
ered to prove EMD works as a filter bank as detailed in
Section 5. Next (Section 6), we present the experimental
results performed on synthetic and real-world datasets to
illustrate our proof and confirm that IMFs can be combined
to form two components: one stochastic and another
deterministic. Finally, in Section 7, we draw conclusions
and discuss future work.

2. On empirical mode decomposition

The Empirical Mode Decomposition (EMD) method
supports the decomposition of signals into Intrinsic Mode
Functions (IMFs) regardless of their linearity, stationarity,
and stochasticity [1,2,8]. The key point to perform this
decomposition is the sifting process [9,10], which initially
analyzes a signal x(t) and identifies local maxima and
minima values of observations along time. The cubic spline
method is then applied to the maxima and minima
to compose the upper u(t) and lower [(t) envelopes,
respectively [1]. The approximation values obtained using
both cubic splines (upper and lower) are used to compute
the mean envelope m(t).
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