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a b s t r a c t

Sparse Bayesian learning (SBL) has high computational complexity associated with matrix
inversion in each iteration. In this paper, we investigate complexity reduced multiple-
measurement vector (MMV) based implementation for single-measurement vector SBL
problems. For problems with special structured sensing matrices, we propose two sub-
optimal SBL schemes with significantly reduced complexity and slight estimation
performance degradation, by exploiting the deterministic correlation in the converted
MMV model explicitly. Two application scenarios on channel estimation in multicarrier
systems and direction of arrival estimation are presented. Simulation results validate the
effectiveness of the schemes.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Sparse Bayesian learning (SBL) [1,2], also known as
Bayesian compressive sensing (BCS) [3], is one of the well-
known compressive sensing techniques. It explores a
Bayesian model based on a prior knowledge to model
signal sparsity, and forms an optimal estimator using the
maximum-a-posteriori (MAP) solution. The SBL frame-
work provides an effective proxy to indirectly solve l0
minimization, leading to a more accurate recovery perfor-
mance than many l1 minimization solutions [3], particu-
larly when the modelling of the statistical properties of the
unknown non-zero variables is accurate. Unlike l1 mini-
mization solutions, which typically require that the mea-
surement matrix satisfies the restricted isometry property
(RIP) to achieve maximally sparse solution, SBL can still
work efficiently when RIP is not satisfied.

In SBL, typically, the posteriori probability density func-
tion (pdf) is represented as a multivariate Gaussian func-
tion, and its mean and variance are estimated iteratively,
using expectation–maximization (EM) algorithms. The esti-
mation process involves matrix inversion and large matrix
multiplication in each iteration, and hence SBL generally
has much higher computational complexity than many
other CS techniques. A fast algorithm for SBL is proposed
in [4] and further developed in [3,5] by adding/removing
signal basis and avoiding matrix inversion. However, we
found such algorithms converge slowly and suffer from
significant estimation performance degradation.

In this paper, we investigate complexity-reduced multi-
ple-measurement vector (MMV) based implementation for
single-measurement vector (SMV) SBL problems by con-
verting a SMV model to a MMV one. We propose two sub-
optimal low-complexity SBL schemes based on multitask
BCS [5] and simultaneous SBL [2] algorithms, by jointly
combining and processing the outputs in each iteration of
these two algorithms to achieve better performance.
Unlike existing group sparse Bayesian algorithms [6–8]
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which learn and exploit the group correlation, our
schemes use the deterministic correlation explicitly. For
problems with a special sensing matrix, we apply max-
imum ratio combining (MRC) in each iteration to improve
the estimation performance. These solutions reduce the
dimension of the matrix to be inverted and can signifi-
cantly reduce the computational complexity. We first
consider the formulation of an MMV model for a general
SMV problem in Section 3.1, derive its optimal solution in
Section 3.2, and present a general suboptimal solution in
Section 3.3. We then focus on a particular signal model
where the sensing matrix has a special structure. We
present two sub-optimal solutions for this special model
in Sections 3.3 and 3.4, and exemplify two applications in
Section 4. Simulation results provided in Section 5 demon-
strate the effectiveness of the proposed scheme.

2. System model

A general SMV model is given by

t¼Ψwþz; ð1Þ
where tACN0

is the measured signal vector, ΨACN0�M is
the sensing matrix, w¼ fwmgACM ;m¼ 1;…;M; is a sparse
signal vector with support K (at most K non-zero values
and K⪡M), and zACN0

, z� CN ð0;σ2IN0 ;0Þ is an additive
noise vector following a complex Gaussian distribution
with zero mean, correlation σ2IN0 and relation matrix 0.

A special model we are particularly interested in is

Ψ¼ ½ðΦD1ÞT ; ðΦD2ÞÞT ;…; ðΦDLÞT �T ; ð2Þ
whereΦACN�M is a sub- sensing matrix, Di ¼ diagfdi;mgA
CM�M ; i¼ 1;…; L;m¼ 1;…;M, is a diagonal matrix. Both Φ
and Di are known. This model represents a large class of
applications such as direction of arrival (DoA) estimation
[9], channel estimation [10], CFO estimation [11], and
linear array synthesis problem [12], where, e.g., the sen-
sing matrix is a partial discrete Fourier Transform (DFT)
matrix.

Assume that wm;m¼ 1;…;M, are independent complex
Gaussian random variables1 with zero mean and variance
γm. Existing results for real signals, such as simultaneous
SBL [2] and multitask compressive sensing [5], can be
directly extended to complex signals by changing matrix
transpose to conjugate transpose, when

E½RðwmÞRðwnÞ� ¼ E½IðwmÞIðwnÞ� and
E½RðwmÞIðwnÞ� ¼ �E½RðwnÞIðwmÞ� ð3Þ
for any n, m [13]. The first condition can be satisfied when
the real and imaginary parts of every wm have the same
variance and different wm are independent variables; and
the second condition becomes true when the real and
imaginary parts of every wm are statistically independent.
Hence these two conditions can be met with reasonable

assumptions which have insignificant effect on the perfor-
mance of SBL, unless the elements in w show large
correlation. In this case, separating the real and imaginary
parts of w and expanding the original SMV problem from
dimension N0 �M to 2N0 �M will be beneficial, and block
SBL [6] can also better capture such correlation. Hereafter,
we will assume that the conditions in (3) are satisfied.

To this end, w follows a multivariate complex Gaussian
distribution with mean 0, covariance matrix Γ¼ diagfγmg;
m¼ 1;…;M, where γm is the variance of wm, and relation
matrix 0. Let γ ¼ ðγ1; γ2;…; γMÞ. The joint prior probability
density function (pdf) of w is then given by

pðw; γÞ ¼ ∏
M

m ¼ 1
CN ð0; γm;0Þ: ð4Þ

The SBL solution is based on MAP optimization where
the posterior pðwjt; γÞ can be expressed as a multivariate
Gaussian distribution with mean and covariance [2]

uðoÞ ¼ΓΨHΣ�1
t t;

ΣðoÞ ¼Γ�ΓΨHΣ�1
t ΨΓ; ð5Þ

where Σt ¼ σ2IN0 þΨΓΨH .
The MAP solution is given by uðoÞ. The type-II maximum

likelihood approach, such as the EM and fast Mackay algo-
rithms [2], can iteratively compute and update γ and uðoÞ.

The computational complexity of the SMV SBL scheme
above is OðMN02Þ, mainly associated with the matrix
inversion and matrix multiplication in (5). For the special
model (2), in general, no fast algorithm is known for
computing the inversion of Σt and the whole complexity
remains similar, except for some limited occasions of
special Di.2

3. MMV formulation and solutions

3.1. MMV formulation of the SMV model

The SMV problem in (1) can be re-formulated as an
MMV problem as

ti ¼Φiwþzi; i¼ 1;…; L; ð6Þ
where ti, Φi and zi contain a fixed number of N rows of t,
Ψ and z, respectively. Note that these rows can be over-
lapped in different measurement vectors, and all the
measurements form a complete measurement of t. Hence
N0rNL. It is not necessary to form more than L¼ ⌈N0=N⌉
MMVs, where ⌈x⌉ denotes the smallest integer no less than
x. For example, when N0 ¼ 5, we can form t1 ¼ ½t1; t2; t3�T
and t2 ¼ ½t3; t4; t5�T for L¼2; or t1 ¼ ½t1; t2�T , t2 ¼ ½t3; t4�T and
t3 ¼ ½t4; t5�T for L¼3.

For the special sensing matrix in (2), we note that the
above MMV formulation is also applicable, and overlapped
rows can be used in different Φi ¼ΦDi.

Now the task is to estimate w over L measurements
T¼ ftig; i¼ 1;…; L.

1 To encourage sparsity presentation, SBL introduces a sparse prior
probability function which should exhibit a sharp peak for wm¼0 and
small tails for wma0, and should also enable simple calculation. A
Gaussian probability function has these features and is typically used.
Whether the signal actually follows a Gaussian distribution is not that
important.

2 One such example is Di ¼ aiD where ai is a scalar coefficient. In this
very special case, both the sensing matrices and the signals to be
estimated in the MMV model are the same in different measurements,
and algorithms operating in the reduced dimension of N, such as the one
in [6], can be applied with reduced complexity of OðMN2Þ.
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