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a b s t r a c t

The Least Mean Square (LMS) algorithm inherits slow convergence due to its dependency
on the eigenvalue spread of the input correlation matrix. In this work, we resolve this
problem by developing a novel variant of the LMS algorithms based on the q-derivative
concept. The q-gradient is an extension of the classical gradient vector based on the
concept of Jackson's derivative. Here, we propose to minimize the LMS cost function by
employing the concept of q-derivative instead of the convent ional derivative. Thanks to
the fact that the q-derivative takes larger steps in the search direction as it evaluates the
secant of the cost function rather than the tangent (as in the case of a conventional
derivative), we show that the q-derivative gives faster convergence for q41 when
compared to the conventional derivative. Then, we present a thorough investigation of
the convergence behavior of the proposed q-LMS algorithm and carry out different
analyses to assess its performance. Consequently, new explicit closed-form expressions for
the mean-square-error (MSE) behavior are derived. Simulation results are presented to
corroborate our theoretical findings.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The concept of adaptive filtering constitutes an impor-
tant part in statistical signal processing. Whenever there is
a requirement to process signals that result from unknown
statistics of an environment, the use of an adaptive filter
offers an attractive solution to the problem. Thus, adaptive
filters are successfully applied in such diverse fields as
equalization, noise cancelation, linear prediction, and in
system identification [1,2]. The most widely used algo-
rithm for adaptive filters is the Least Mean Squares (LMS)
algorithm [3]. The conventional LMS algorithm is derived

using the concept of the steepest descent approach with
the aid of conventional gradient1 whose weight update
can be formulated as [1]

wiþ1 ¼wi�
μ
2
∇wJ wð Þ; ð1Þ

where JðwÞ ¼ E½e2i � for the well known LMS algorithm [1,2]
and ei is the estimation error between the desired
response, di, and its estimate, uT

i wi, produced by an
adaptive filter for an input ui at time instant i, that is,

ei ¼ di�uT
i wi: ð2Þ

Since the LMS algorithm belongs to the class of stochastic
gradient type adaptive algorithms, it inherits their low
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computational complexity and their slow convergence, espe-
cially when operating on highly correlated signals like speech.
One approach to overcome the slow convergence problem of
the LMS algorithm is by employing a time varying step size in
the standard LMS algorithm [4–9]. This is based on using a
large step size when the algorithm is far from the optimal
solution, thus speeding up the convergence rate, and when
the algorithm is near the optimum, a small step size is used to
achieve a low level of misadjustment, thus achieving a better
overall performance. This can be obtained by adjusting the
step size in accordance to some criterion. Several criteria have
been used, such as squared instantaneous error [4], sign
changes of successive samples of the gradient [5], cross
correlation of input and error [6], gradient of squared error
cost function [7], and square of the time averaged estimate of
the correlation of the error [8], just to name a few. The second
approach to improve the convergence speed is to use a
normalization in the weight update of the LMS or the Least
Mean Fourth (LMF) algorithms, such as used in the normal-
ized LMS (NLMS) algorithm [10] and in the variable XE-NLMF
algorithm [11]. Unlike the previous two approaches, a third
approach relies on adding a proper constraint to the cost
function of the LMS or LMF algorithms [12–15]. Or, more
recently, the kernel-based non-linear kernel LMS variants
such as the Kernel LMS algorithm for real-valued input [16],
the Complex Kernel LMS (CKLMS) algorithm [17] and a
modified CKLMS based on modified Wirtinger's Calculus [18]
have also been investigated. All these variants of the LMS
algorithm improve convergence speed and/or reduce the
mean-square-error at the expense of an increase in the
computational complexity. In order to improve more the
convergence performance of the conventional LMS algorithm
while retaining its simplicity, here we propose to utilize a
novel concept based on the q-calculus which is introduced in
the ensuing section, and eventually yield the q-LMS algorithm.

1.1. Overview of the q-calculus and the q-gradient

In the last few decades, the q-calculus has gained a lot
of interest in various fields of science, mathematics,
physics, quantum theory, statistical mechanics, and signal
processing [19]. Jackson introduced the concepts of the q-
derivative [20] (well known as Jackson's derivative) and
the q-integral [21]. The q-derivative of a function f(x) with
respect to variable x, denoted by Dq;xf ðxÞ, is defined as [22]

Dq;xf xð Þ9
f ðqxÞ� f ðxÞ

qx�x if xa0;
df ð0Þ
dx ; x¼ 0;

8<
: ð3Þ

where q is a real positive number different from 1. In the
limiting case of q-1, the q-derivative reduces to the
classical derivative. Thus, as an example, the q-derivative
of a function of the form xn is

Dq;xxn ¼
qn �1
q�1 x

n�1 if qa1;

nxn�1 if q¼ 1:

(
ð4Þ

Extending this idea to the q-gradient of a function f ðxÞ of n
variables, where x¼ ½x1; x2;…; xn�T , the q-gradient in this

case is defined as

∇q;xf ðxÞ9 ½Dq1 ;x1 f ðxÞ;Dq2 ;x2 f ðxÞ;…;Dqn ;xn f ðxÞ�T ; for qa1;

ð5Þ

where q¼ ½q1; q2;…; qn�T .
Using the concept of q-gradient, it is shown in [23] that

the use of the negative of the q-gradient of the objective
function as the search direction for unconstrained global
optimization gives better results than the one obtained by
the conventional gradient. This motivates us to investigate
the q-gradient-based adaptive algorithms.

1.2. Paper contributions and organization

The main contributions of the paper are as follows:

(1) In this work, we introduce a new class of adaptive
filtering based on q-calculus. More specifically, we
derive a novel variant of the LMS algorithm by repla-
cing the conventional gradient in (1) by the q-gradient
which we named as q-LMS algorithm.

(2) We provide a geometrical interpretation of the
q-gradient to justify the proposed design. This also
offers us a better understanding that how the q-
gradient can improve the convergence speed of an
adaptive filter.

(3) We show an interesting attribute of the q-gradient based
LMS algorithm that it canwhiten the colored input of the
adaptive filter by employing proper selection of its q-
parameters. Consequently, it improves the convergence
speed of the algorithm.

(4) We carry out a thorough analytical investigation of the
proposed algorithm by studying both its transient and
steady-state convergence behaviors. Consequently, both
the MSE and MSD learning curves are evaluated and
expressions for the steady-state EMSE and the MSD are
derived.

(5) We also develop an efficient mechanism to make the q
parameter time varying such that variable q-LMS
algorithm should give a faster convergence while
attaining a lower steady-state EMSE.

(6) We perform extensive simulations to show the super-
iority of the q-LMS algorithms over the conventional
LMS and the NLMS algorithms and to validate the
analytical results.

The paper is organized as follows. Following this intro-
duction, the q-steepest descent algorithm is developed in
Section 2. A geometrical interpretation of the q-gradient is
presented in Section 3. Section 4 introduces the proposed q-
LMS algorithm. In Section 5, whitening property of the q-LMS
algorithm is investigated. A thorough performance analysis is
carried out for the developed q-LMS algorithm in Section 6. In
Section 7, an efficient time varying q-LMS algorithm is
designed. While the simulation results are presented in
Section 8, Section 9 summarizes this work.

U.M. Al-Saggaf et al. / Signal Processing 111 (2015) 50–60 51



Download English Version:

https://daneshyari.com/en/article/566319

Download Persian Version:

https://daneshyari.com/article/566319

Daneshyari.com

https://daneshyari.com/en/article/566319
https://daneshyari.com/article/566319
https://daneshyari.com

