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a b s t r a c t

In this paper, the designs of matrix fractional order differentiator (MFOD) for differentiat-
ing digital signals are presented. First, the definitions of fractional derivatives are
reviewed briefly and design problem of MFOD is stated. Then, three kinds of methods
for designing MFOD are described including the conventional FIR and IIR filter methods,
the discrete sine transform (DST) and discrete cosine transform (DCT) methods, and
optimization methods. Next, numerical examples are demonstrated to compare the
performances of these three design methods and the variable MFOD design is also
studied. Finally, the image sharpening application and signal de-nosing application are
used to show the effectiveness of the proposed matrix fractional order differentiators.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, fractional order signal processing has rece-
ived great attentions in many engineering applications. The
research topics include fractional Fourier transform, fractional
delay filter, fractional Hilbert transformer, fractional order
moment and fractional calculus [1–5]. In the research area of
fractional calculus, the integer order n of derivative Dnx
ðtÞ ¼ dnxðtÞ=dtn of function xðtÞ is generalized to fractional
order DvxðtÞ, where v is a real number. So far, fractional
differentiation and fractional derivative have extensively used
in digital signal processing applications described below: First
is the design of one-dimensional (1-D) and two-dimensional
(2-D) digital FIR filters with fractional derivative constraints
[6,7]. Second is the digital image processing in which
fractional derivative is used to detect the edges [8], enhance
the contrast of images [9] and reconstruct a higher resolu-
tion image from the associated lower resolution image [10].
Third is the signature verification in which fractional
differential operator is applied to extract the dynamic

feature from the handwritten signature [11]. Due to the
success of the fractional calculus in signal processing, it is
interesting to design various fractional order differentiators
to solve the digital signal processing problems.

In order to compute the fractional derivatives of digital
signals, several design methods of fractional order differ-
entiators (FOD) have been presented. The ideal frequency
response of conventional FOD is given by

HdðωÞ ¼ ðjωÞv ¼ ωvejðvπ=2Þ ð1Þ
where j¼

ffiffiffiffiffiffiffiffi
�1

p
and v is a real number. Thus, the FOD design

problem is how to find a digital filter such that its actual
frequency response fits the ideal response HdðωÞ as well as
possible. When the order v is fixed, it is called the fixed
fractional order differentiator (FFOD) design. So far, some
methods have been proposed to design FFOD including the
Taylor series expansion method [12], continued fraction
expansion method [13], fractional sample delay method [14],
radial basis function method [15] and discrete cosine trans-
form method [16]. If the order v is adjustable, it is called the
variable fractional order differentiator (VFOD) design. Several
typical methods to solve the VFOD design problem are the
weighted least squares method [11,17] and series expansion
method [18,19]. All methods have their unique features.
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On the other hand, the matrix filters are particularly useful
for filtering short data records. In [20], the convex optimization
method is used to design low-pass filter, band-pass filter and
Hilbert transformer. In [21], the matrix band-pass filter design
using semi-infinite programming with application to direct-
ion-of-arrival (DOA) estimation is presented. In [22], a simple
computer-aided approach for designing matrix low-pass filter
is presented based on least-square criterion. Due to the
success of matrix filter for filtering short data records, it is
interesting to design matrix fractional order differentiators
(MFOD) for computing the fractional derivatives of digital
signals. Although the conventional FIR and IIR fractional order
differentiators in [12–16] can be used to design MFOD, their
performances are not good because of the causal and time-
invariant constraints imposed on FIR and IIR FOD. To improve
the performance, the discrete sine and cosine transform
methods and optimization methods are presented to design
MFOD in this paper. Because the closed-form and optimal
solutions are obtained, the MFOD are easily used in various
signal processing applications.

This paper is organized as follows. In Section 2, the defi-
nitions of fractional derivatives are reviewed briefly and design
problem of MFOD is stated. In Section 3, the designs of MFOD
using digital FIR and IIR FOD are presented. In Section 4, the
designs of MFOD using discrete cosine and sine transforms are
described. In Section 5, the designs of MFOD using optimiza-
tions method are studied including least squares (LS) method
and convex optimization method. In Section 6, the variable
MFOD is designed by using discrete sine transform and Taylor
series expansion methods. The main feature of variable MFOD
is that the fractional order v can be quickly changed without
re-designing a new MFOD. In Section 7, the digital image
sharpening application and signal de-nosing application are
used to show the effectiveness of the proposed matrix frac-
tional order differentiators. Finally, a conclusion is made.

2. Fractional derivative and problem statement

In this section, the definition of fractional derivative is
first reviewed briefly. Then, the design problem of matrix
fractional order differentiator is stated.

2.1. Fractional derivative

In the literature, there are several definitions of frac-
tional derivative and integral such as the Riemann–Liou-
ville, the Grünwald–Letnikov and the Caputo definitions
[5–7]. In this paper, we will use the Grünwald–Letnikov
derivative whose definition is given by

DvxðtÞ ¼ dvxðtÞ
dtv

¼ lim
Δ-0

∑
1

k ¼ 0

ð�1ÞkCv
k

Δv xðt�kΔÞ ð2Þ

where coefficient Cv
k is given by

Cv
k ¼

Γðvþ1Þ
Γðkþ1ÞΓðv�kþ1Þ ¼

1; k¼ 0;
vðv�1Þðv�2Þ⋯ðv�kþ1Þ

1:2:3⋯k ; kZ1

(
ð3Þ

The above notation ΓðU Þ is the gamma function. Based on this
definition, it can be shown that the fractional derivatives of
exponential, power and trigonometric functions are given by

Dveαt ¼ αveαt ð4aÞ

Dvtq ¼ Γðqþ1Þ
Γðq�vþ1Þt

q�v ð4bÞ

DvA sin ðωtþϕÞ ¼ Aωv sin ðωtþϕþ π
2 vÞ ð4cÞ

DvA cos ðωtþϕÞ ¼ Aωv cos ðωtþϕþ π
2 vÞ ð4dÞ

So far, the definition of fractional derivative has been described.

2.2. Problem statement

Given a real-valued input data sequence xð0Þ, xð1Þ,…,
xðN�1Þ whose elements are placed in a vector x and the
filtered output sequence yð0Þ, yð1Þ,…, yðN�1Þ whose ele-
ments are placed in a vector y, the matrix filtering operation
can be expressed as

y¼Hx ð5Þ
where H is an N � N matrix filter. Three properties of matrix
filter in (5) are described below:

(1) If y1 ¼Hx1 and y2 ¼Hx2 are valid, then the expression
α1y1þα2y2 ¼Hðα1x1þα2x2Þ holds. So, matrix filter is a
linear filter.

(2) If matrix H is a Toeplitz matrix, then matrix filter is a
time-invariant filter.

(3) If matrix H is a lower triangular matrix, then matrix
filter is a causal filter because yðnÞ only depends on the
xðnÞ, xðn�1Þ,…, xð0Þ.

In this paper, the design problem of matrix fractional
order differentiator (MFOD) is studied. That is, the problem
is how to determine the matrix H such that filter output y
is the fractional derivative of input vector x. Define the
vector of the cosine sequence below:

aðωÞ ¼ ½ cos ð0ωÞ cos ð1ωÞ cos ð2ωÞ ⋯ cos ððN�1ÞωÞ� T ð6Þ
then the ideal fractional derivative vector of aðωÞ is given by

bðωÞ ¼DvaðωÞ

¼ ωv cos ð0ωþ π
2 vÞ ωv cos ð1ωþ π

2 vÞ ⋯ ωv cos ððN�1Þωþ π
2 vÞ

h iT
ð7Þ

Clearly, the amplitude of cosine sequence is amplified by ωv

and phase is shifted by vπ=2 which are consistent with the
specification of the ideal frequency response HdðωÞ in (1).
Therefore, the design problem reduces to how to determine
the matrix H such that filter output HaðωÞ approximates the
ideal vector bðωÞ as well as possible for all ω in the interested
frequency band R. In this paper, three kinds of designmethods
will be presented to find the matrix H including conventional
FIR and IIR fractional order differentiator (FOD) methods,
discrete sine transform (DST) and discrete cosine transform
(DCT) methods, and optimization methods. The details will be
described in next three sections. To evaluate performances of
these design methods, an average integral squared error is
defined as

Eav ¼
R
ωAR‖HaðωÞ�bðωÞ‖22 dω

N
ð8Þ

Thus, the smaller the error Eav is, the better the design
method is.
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