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a b s t r a c t

In this paper, we propose a novel technique for finding the graph embedding and function
extension for directed graphs. We assume that the data points are sampled from a
manifold and the similarity between the points is given by an asymmetric kernel. We
provide a graph embedding algorithm which is motivated by Laplacian type operator on
manifold. We also introduce a Nyström type eigenfunctions extension which is used both
for extending the embedding to new data points and to extend an empirical function on
new data set. For extending the eigenfunctions to new points, we assume that only the
distances of the new points from the labelled data are given. Simulation results
demonstrate the performance of the proposed method in recovering the geometry of
data and extending a function on new data points.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in geometric based methods of data
mining and machine learning lead to efficient algorithms for
lots of applications such as dimensionality reduction, function
extension, classification and clustering, just to name a few.
Most of these methods are graph based techniques. Graphs
offer an advantageous compromise between their simplicity,
interpretability and their ability to express complex relation-
ships between data points. The core idea in such algorithms is
to construct a weighted graph on data points such that each
vertex of the graph represents a data point, and a weighted
edge, connecting two vertices to each other, represents the
similarity between the two corresponding data points. In the
context of networks (e.g., social networks), the data naturally
lead themselves to graph modelling [1]. The graph based
representation of data combined with Markov chain techni-
ques exhibits extremely successful results. The main idea here
is based on the fact that the eigenvectors of Markov matrices
can be regarded as coordinates on the data set. Among vast

techniques incorporating Markov chain methods in data pro-
cessing, kernel eigenmap methods have attracted much res-
earch attention recently. The algorithmic consequences of
these methods are local linear embedding (LLE) [2], Laplacian
eigenmaps [3], Hessian eigenmaps [4], local tangent space
alignment [5] and diffusion maps [6].

In most of these kernel eigenmaps based methods, the
similarity between points is given by a symmetric posit-
ive semi-definite kernel. In some practical applications the
similarity between points is not necessarily symmetric.
Typical examples are web information retrieval based on
hyperlink structure, document classification based on
citation graphs [7], web information retrieval based on
hyperlink structure, and protein clustering based on pair-
wise alignment scores [8]. Some works have been done to
deal with the ranking problem on link structure of the
Web. Although much progress in the field, it is still a hard
task to do general data analysis on directed graphs such as
classification and clustering. Chen et al. [9] proposed an
algorithm for embedding vertices on directed graphs to
vector spaces. This algorithm explores the inherent pair-
wise relation between vertices of the directed graph by
using transition probability and the stationary distribution
of Markov random walks, and embeds the vertices into
vector spaces preserving such relation optimally. Recently,
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Perrault-Joncas and Meilă [10] proposed an algorithm based
on the analysis of Laplacian type operators and their con-
tinuous limit as generators of diffusions on a manifold. They
modelled the observed graph as a sample from a manifold
endowed with a vector field, and designed an algorithm
that separates and recovers the features of this process: the
geometry of the manifold, the data density, and the vector
field. The most important shortcoming of these methods is
not providing a straightforward procedure to extend the
embedding to new points in case only the distances of the
new point to the original data points are known, which enc-
ountered in applications. In [11], Coifman and Hirn intro-
duced a simple procedure for the construction of a bi-sto-
chastic kernel for an arbitrary data set that is derived from
an asymmetric affinity function. The affinity function mea-
sures the similarity between points in test set and some ref-
erence set.

These geometric based algorithms have been applied in
various signal processing applications. In a pioneering work,
Shi and Malik [12] used spectral methods for image segmen-
tation. Later many researchers have used geometric based
methods in applications such as image clustering [13,14],
image completion [15], speech enhancement in the presence
of transient noise [16], voice activity detection in the presence
of transient noise [17], linear and nonlinear independent
component analysis [18,19], parametrization of linear systems
[20], and single channel source localization [21]. Most if not
all of these applications can be regarded as out of sample
function extension, in which an empirical function is exte-
nded to unlabelled data. In these applications, usually a large
amount of data is involved and the only way to perform a
task like clustering, regression, or classification is to sub-
sample the data set X in order to reduce the size of the
problem, process the new set X, and then extend the results
to the original data X . Coifman and Lafon [22] proposed a
geometric harmonics procedure, inspired from the Nyström
method, to perform this task. More specifically, they assumed
that the similarity between the data points is given by a sym-
metric positive semi-definite kernel. Then it is shown that the
eigenfunctions of the integration operator defined by this
kernel form an orthogonal basis for the space of squared
integrable functions defined on X (i.e. L2ðX Þ). In order to
extend a function defined on the set X to the data set X , first
the eigenfunctions computed on X are extended to the data
set X using the Nyströmmethod. The function is then
approximated as the weighted sum of these extended eigen-
functions. Kushnir et al. [23] and Singer et al. [19] introduced
a method for parameterizing high dimensional data into its
independent physical parameters, which enables the identi-
fication of the parameters and a supervised extension of
the re-parametrization to new observations. In their work, a
novel diffusion processes was used, utilizing only the small
observed set, that approximates the isotropic diffusion on the
parametric manifold. They utilized Nyström-type extension
of the embedding of that small observed data-set to the emb-
edding into the independent components on a much larger
data-set.

In this paper, we propose a novel technique for embed-
ding a directed graph to Euclidean space. We model the
observed data as samples from a manifold where the
similarity between the points is given by an asymmetric

kernel. This asymmetric kernel is modelled utilizing a vec-
tor field, and we design an algorithm that separates and
recovers the geometry of the manifold, the data density,
and the vector field. We further provide a simple Nyström
extension procedure which allows us to extend both the
embedding and the estimated vector field to new data
points. More precisely, we adopt the method presented in
[23] into the case when the kernel is asymmetric. The rest
of this paper is organized as follows. In Section 2, we pro-
vide a model which can be used in directed graph model-
ling. We also introduce our results regarding the limit of
Laplacian type operators and provide an algorithm for obt-
aining the embedding of a directed graph. We also propose
a Nyström extension procedure for extending the embed-
ding and the vector field to new data points. In Section 3
we provide some experimental results. We conclude the
paper in Section 4.

2. Problem formulation, embedding and function
extension

Let X be a set of n data points sampled according to a
distribution p¼ e�U from an unknown smooth manifold
M�Rℓ with intrinsic dimension doℓ. Let G be a directed
graph with n nodes constructed from the data set X, where
each nodes of the graph (e.g. the node i) corresponds to a
point in the set X (e.g. xiAX). We assume that the edge
weight Ki;j between nodes i and j is given by a positive
asymmetric similarity kernel kϵð�; �Þ (i.e. Ki;j ¼ kϵðxi; xjÞZ0).
We also assume that the directional component of kϵð�; �Þ is
derived by a vector field r on the manifold M, which will
be precisely defined shortly. This vector field r is sufficient
to characterize any directionality associated with a drift
component and as it turns out, the component of r normal
to M�Rℓ can also be used to characterize any source
component, see [10] for further discussion. The problem is
finding an embedding of G into Rm;mrd which approx-
imates the generative process geometry M, the sampling
distribution p¼ e�U , and the directionality r. This embed-
ding needs to be consistent as sample size increases and
the bandwidth of the kernel vanishes.

2.1. Anisotropic diffusion operator

Any kernel kϵðx; yÞ can be decomposed into symmetric
and anti-symmetric parts as follows:

kϵðx; yÞ ¼ hϵðx; yÞþaϵðx; yÞ; ð1Þ
where hϵðx; yÞ ¼ hϵðy; xÞ is the symmetric component and
aϵðx; yÞ ¼ �aϵðy; xÞ is the antisymmetric component of the
kernel. As in [10], we assume that the symmetric and anti-
symmetric parts can be written as

hϵ x; yð Þ ¼ hðJx�yJ2=ϵÞ
ϵd=2

ð2Þ

aϵ x; yð Þ ¼ rðx; yÞ
2

� y�xð ÞhðJx�yJ2=ϵÞ
ϵd=2

; ð3Þ

respectively, where rðx; yÞ ¼ rðy; xÞ and hZ0 is an arbitrary
exponentially decreasing function when Jx�yJ converges
to infinity.
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