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a b s t r a c t

This paper studies the possibility of upper bounding the position error for range-based
positioning algorithms in wireless sensor networks. In this study, we argue that in
certain situations when the measured distances between sensor nodes have positive errors,
e.g., in non-line-of-sight (NLOS) conditions, the target node is confined to a closed bounded
convex set (a feasible set) which can be derived from the measurements. Then, we formulate
two classes of geometric upper bounds with respect to the feasible set. If an estimate is
available, either feasible or infeasible, the position error can be upper bounded as the
maximum distance between the estimate and any point in the feasible set (the first bound).
Alternatively, if an estimate given by a positioning algorithm is always feasible, the maximum
length of the feasible set is an upper bound on position error (the second bound). These bounds
are formulated as nonconvex optimization problems. To progress, we relax the nonconvex
problems and obtain convex problems, which can be efficiently solved. Simulation results show
that the proposed bounds are reasonably tight in many situations, especially for NLOS
conditions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in technology have instigated the use of
tiny devices as sensors in large distributed wireless sensor
networks (WSNs). A sensor device is capable to sense its
environment for monitoring, controlling, or tracking purposes
for both civil and military applications [1]. Due to drawbacks
in using GPS for WSNs, extracting the position informa-
tion from the network, also called localization, has been

extensively studied in the literature [2,1,3–6]. It is commonly
assumed that there are a number of fixed reference sensors,
also called anchors, whose positions are a priori known, e.g.,
by using GPS receivers [7]. To find the position of other sensor
nodes at unknown positions, henceforth called target nodes, it
is assumed that there are some types of measurements, e.g.,
time-of-arrival, angle-of-arrival, or received signal strength,
taken between sensor nodes [1].

During the last decades, various positioning algorithms
have been proposed in the literature. Different positioning
approaches can be categorized based on various factors
[8]. For instance, as long as an accurate model of measure-
ments and the statistics of the measurement errors are
known, classic estimators, e.g., the maximum likelihood
(ML) and the least squares (LS) approaches, can be

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2014.12.015
0165-1684/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: mohrg@kth.se (M. Reza Gholami),

erik.strom@chalmers.se (E.G. Ström),
henkw@chalmers.se (H. Wymeersch),
jan.mats.ake.rydstrom@gmail.com (M. Rydström).

Signal Processing 111 (2015) 179–193

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2014.12.015
http://dx.doi.org/10.1016/j.sigpro.2014.12.015
http://dx.doi.org/10.1016/j.sigpro.2014.12.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.12.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.12.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.12.015&domain=pdf
mailto:mohrg@kth.se
mailto:erik.strom@chalmers.se
mailto:henkw@chalmers.se
mailto:jan.mats.ake.rydstrom@gmail.com
http://dx.doi.org/10.1016/j.sigpro.2014.12.015


employed successfully to solve the positioning problem.
When the distribution of the measurement errors is
unknown or the computational complexity of classic
estimators is too high, a number of simple techniques
can be applied to the problem. For example, suboptimal
algorithms such as semidefinite programming (SDP) [9] or
closed-form linear least squares (LLS) [10,11] have been
successfully applied to the positioning problem. In one
class of suboptimal algorithms based on a geometric
interpretation, the authors of [12,13] formulated the posi-
tioning problem as a convex feasibility problem (CFP) and
applied the well-known orthogonal projection onto con-
vex sets (POCS) approach to solve the problem. This
method turns out to be robust against non-line-of-sight
(NLOS) conditions [14]. POCS was previously studied for
the CFP and has found applications in several research
fields [15,16].

Positioning algorithms can be evaluated based on
different performance metrics such as complexity, accu-
racy, and coverage [8]. In the literature one way to assess
the positioning algorithms is to evaluate the position error,
defined as the Euclidian norm of the difference between
the position estimate and the true position. There are a
number of techniques to evaluate the performance of an
algorithm based on the position error. For instance, a
lower bound on the mean square position error is a
common metric [17,18]. There exist a number of such
lower bounds for the positioning algorithms in the litera-
ture. For example the Cramér–Rao lower bound (CRLB),
which gives a lower bound on the variance of any unbiased
estimator, can be computed if the probability density
function (PDF) of the measurement error is known and
satisfies some regularity conditions [19]. Generally, differ-
ent benchmarks in the literature are used to statistically
assess a positioning algorithm, which implies that the
error in a single position estimate cannot be characterized
in a deterministic fashion.

Besides a lower bound on the position error, in some
applications it may be useful to know the worst-case behavior
of the position error. Such knowledge may be useful not only
for evaluation of different services provided by WSNs but also
for design and resource management [1,20]. Similarly in
evaluation of the worst-case position error, we may be
interested in assessing a single point estimate. As an example
consider Fig. 1, which shows how a nontrivial (i.e., finite)
upper bound on the position error can be used by a traffic
safety application to decrease collisions between vehicles. If
an estimate of a vehicle and a nontrivial upper bound on the
position error are available, we can define an area in which
the vehicle is certainly located, e.g., a disc centered at the
position estimate and with a radius equal to the upper bound
on the position error. Such an estimate can be obtained in
every vehicle, for instance, by measuring the distance
between the vehicle and a number of fixed nodes (at known
positions) along the road. The estimate of cars' positions and
upper bounds on the position errors can be exchanged
between vehicles. By this approach, we may be able to
decrease the number of collisions between vehicles. In gen-
eral, computing the position error might be difficult since the
true position is unknown, but one may be able to derive an
upper bound on the position error. To the best of our

knowledge, there is no specific work in the literature on
deriving upper bounds on the position error. In this study, we
aim at tackling this subject in a geometric framework.

In general, the concept of an upper bound on the
position error (or any estimation error) seems to be
questionable. In fact, it is not clear if it is meaningful to
study upper bounds, since the position error can, in
general, be arbitrarily large. In this study, however, we
argue that in some practical situations, the position error is
finite and can be upper bounded. For instance, if a target
node position belongs to a closed bounded set (a feasible
set), an upper bound on the position error can be com-
puted from the feasible set. For example, for distance-
based positioning, if measurement errors are assumed to
be positive, a convex set including the target node can be
defined from measurements. The feasible set, in which the
target node is located, is the intersection of a number
of balls (in a 3-dimensional network) or discs (in a
2-dimensional network) centered at the position of refer-
ence nodes [21]. The assumption of positive measurement
errors is fulfilled in some scenarios. For instance, in NLOS
conditions, the measured distances are often much larger
than the actual distances. For practical ranging using UWB,
it has been observed that the measurement errors tend to
be positive, even for line-of-sight (LOS) scenarios [22]. It
should be noted that the measurement error, in general,
can be negative as well, meaning the intersection no
longer contains the location of the target node and the
bounding technique may not work properly. In such
scenarios, one can, e.g., modify the measurements and
obtain a new set of distance measurements that are larger
than the actual distances. For example, if a reasonable
lower bound on negative measurement errors is available,
then we can enlarge the measurements with the absolute
value of the lower bound and obtain a set of measure-
ments with positive errors. Now, assuming a closed
bounded (compact) convex set derived from distance
measurements having positive errors, a position estimate
given by an algorithm can be either feasible or infeasible
with respect to the feasible set. If an estimate is available
(feasible or infeasible), it is reasonable to define the
maximum distance from the estimate to any point in the
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Fig. 1. An example of the application of an upper bound on the position
error for traffic safety. A solid circle defines the area in which a vehicle
definitely lies. In this figure based on an upper bound on the position
error, car 2 and 3 might collide.
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