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a b s t r a c t

Hyperspectral images (HSIs) have a high spectral resolution and ground-object recogni-
tion ability, but inevitably suffer from various factors in the imaging procedure, such as
atmospheric effects, secondary illumination, and the physical limitations, which have a
direct bearing on the visual quality of the images and the accuracy of the subsequent
processing. HSI restoration is therefore a crucial task for improving the precision of the
subsequent products. Currently, patch-based schemes have offered promising results for
the preservation of detailed information and the removal of additive noise. In HSIs, the
information in the spectral dimension is more redundant than the information in the
spatial dimension. We therefore propose a multidimensional hyperspectral nonlocal
model, in which both the correlation of the spectral bands and the similarity of the
spatial structure are considered. In the model, a multidimensional nonlocal total variation
constraint is applied to preserve edge sharpness. Experiments with both synthetic and
real hyperspectral data illustrate that the proposed method can obtain promising results
in HSI restoration.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral images (HSIs) simultaneously provide spa-
tial and spectral information to identify specific materials in
a scene. Unfortunately, during the acquisition procedure of
HSIs, atmospheric effects, secondary illumination, and the
physical limitations of the sensors (such as artifacts, sensor
noise, and dead pixels) degrade the quality of the images [1].
These disturbance factors influence the visual effect of the
HSIs and limit the precision of the subsequent applications,
such as land-surface classification, object identification, and
change detection. To achieve a more accurate estimation, it is

important to overcome these limitations and improve the
quality of the HSIs.

HSI restoration aims at generating a high-quality image
from its degraded version. To date, various HSI restoration
techniques have been proposed. We review the existing
popular HSI restoration methods in the following. One type
of methods is based on the strategy of transform domain
[2–6]. With these methods, the input hyperspectral signals
are converted into signals in another space, such as the
wavelet domain, in which the noise is easily separated from
the signal using the compactness of the true signal. The
traditional wavelet denoising techniques apply a 2D wave-
let transform on each band separately, and thus discard the
spectral correlation information. To improve its perfor-
mance with HSIs, the wavelet transform has been combined
with other spectral band decorrelation methods, such as
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discrete Fourier transform [2] and PCA [3,4]. To exploit the
inter-band correlation and spatial information, other
advanced HSI noise reduction techniques can be accom-
plished through wavelet thresholding [5] in the Bayesian
estimation framework, and in combination with different
prior models [7–10]. However, the biggest drawback of the
wavelet-based methods is that they often generate ringing
artifacts, shown as additional edges or structures [11].

To preserve the spectral feature, multidimensional filter
methods [12–14] have been developed to consider the HSI
as a multidimensional data cube in the spatial domain, to
simultaneously process the spatial and spectral informa-
tion. These methods include the multidimensional Wiener
filter [12], genetic kernel tucker decomposition [15], and
adaptive 3D filtering [16]. However, the classical multi-
dimensional analysis methods can have great difficulty in
distinguishing the signal and noise subspaces, and thus
may introduce some artifacts, and they also tend to over-
smooth the image and lose many textural details [13].

Together with the progress made in remote sensing, to
better preserve the textural details and overcome the
artifacts, regularization-based approaches [17–23] have
emerged in recent years to enhance both the spatial
structure and spectral feature. These approaches recover
the original image by adding a reasonable assumption or
prior knowledge into the observation model. The different
priors can be applied to meet different goals, such as
preserving edges, protecting textural details, and avoiding
artifacts and noise. Yuan et al. [18] employed a spectral–
spatial adaptive total variation (TV) model to adaptively
denoise image in both the spatial and spectral dimension.
Chen and Hu [19] proposed a spatial–spectral domain
mixing prior, in which an edge-preserving prior is used
to preserve the geometrical structure in the spatial
domain, and adaptive spectral weights for the different
materials are constructed in the spectral domain. Qian [20]
used variance-stabilizing transformation to simplify the
mixed-noise into Gaussian noise, and then introduced a
structured sparsity-based model to remove the noise.

In regularization-based algorithms, the HSI recovery is
cast as the inverse problem of recovering the original high-
quality image. A robust estimation for the solution is
obtained relying on some strong image priors, and various
regularization functions have been proposed to further
stabilize the inversion of this ill-posed problem, such as
Tikhonov regularization [24], GaussianMarkov random fields
regularization [25], Huber-MRF regularization [26], TV reg-
ularization [18], nonlocal-based regularization [27,28], and
sparse regularization [21,22]. Among these models, the
nonlocal-based model [29] is a very popular and powerful
tool, which has been widely used in various applications,
such as denoising [30], super-resolution reconstruction [31],
inpainting [32], and shadow removal [33], because of its
good performance in edge and texture preservation.

For HSIs, the simplest way to apply a nonlocal-based
regularization is in a band-by-band manner. However, the
spectral dependency and inter-channel relationship of the
hyperspectral signals will not be fully made use of. Further-
more, owing to the relatively low spatial resolution of HSI
[34], the similarity between patches from only a single band
is insufficient. At the same time, as the noise-intensity in

each band is usually different, the denoising strength
should be adaptively adjusted with the noise-intensity in
each band. Therefore, we propose a spectrally adaptive
multidimensional nonlocal total variation (SAMNLTV)
model by exploiting the high correlation of bands to better
restore a low-quality HSI. The main ideas and contributions
of the proposed approach can be summarized as follows:

(1) A multidimensional nonlocal TV regularization is pro-
posed to acquire more redundancy from the highly
correlated bands. Since the intensity of the signal is
contiguous in the highly correlated or neighboring
bands, they are selected to provide more similar
patches in the scheme.

(2) A spectrally adaptive method is proposed for the
multidimensional nonlocal TV model. To suppress the
different intensities of noise in the different bands, a
wavelet method is applied to roughly estimate the
strength of noise in the different bands. By making use
of the noise strength, an adaptive regularization para-
meter selection strategy is proposed to improve the
restoration results.

(3) A split Bregman iteration algorithm is used to optimize
the proposed HSI restoration model. From the experi-
mental results with both simulated and real data, it is
illustrated that the proposed model produces good
image restoration results.

The rest of this paper is organized as follows. In Section 2,
the proposed multidimensional nonlocal total variation
model is formulated. Section 3 contains the experimental
results and discussion, and Section 4 is the conclusion.

2. The multidimensional nonlocal total variation model

Assuming that we have a HSI UARM1M2�B corrupted by an
additive noise VARM1M2�B. Mathematically, this is denoted as
UARM1M2�B, where the matrix representation of the original
HSI is of a size of M1 �M2 � B, in which M1 represents the
number of samples in a line, M2 stands for the number of
lines in the image, and B denotes the number of bands. The
degradation model for each band can then be defined as

f b ¼ ubþvb ð1Þ
where ubARM1M2 denotes the vector representation of one
band with a size of M1 �M2. fbARM1M2 denotes one band of
the degraded image FARM1M2�B, and the additive noise is
vbARM1M2 , which is added to the bands ub.

Applying the maximum a posteriori probability (MAP)
estimator, the HSI restoration model can be represented as
the following regularized least squares problem [18]:

_
U ¼ arg min

U

XB
b ¼ 1

‖ub�fb‖22þλΦ Uð Þ
( )

ð2Þ

In the cost function, the first term is called the fidelity
term, which denotes the fidelity between the observed
noisy data and the original clear data, while the second
term Φ Uð Þ is an additional regularization function. λ is the
regularization parameter used to balance the tradeoff
between the fidelity term and the regularization term.
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