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a b s t r a c t

The perturbed harmonic oscillator appear frequently in the mathematical modelling of many problems in
physics and engineering. The harmonic oscillator has a special purpose in Astrodynamics, because the
Kunstaanheimo–Stiefel (KS) and Burdet–Ferrándiz (BF) transformations reduce the Kepler problem to
harmonic oscillators.

A new multi-step methods of numerical integration are introduced that generalize SMF ones. They are
defined for arbitrary order and have similar properties to the former methods.

Modified methods allowing step variations, whose coefficients are computed from relations of recur-
rence, are derived, what considerably improve the implementation of the algorithms.

These methods are based in a sequence of analytical u-functions dependent on two parameters a and b
that generalizes the Scheifele’s G-functions and that, under wide hypothesis, allow us obtain the solution
of harmonic oscillator.

In this paper a new methodology is generated to solve the problem which the u-functions series create
regarding the calculus of recurrence relations transforming the method into a multistep scheme. The
methodology is implemented in a computational algorithm, which lets us solve in a general way the
problems of physics and engineering which are modalized by means of the study of the harmonic oscil-
lators.

Numerical examples already used by other authors are presented. They show how the new developed
methods in this paper may compete in accuracy or efficiency with other well-reputed algorithms.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In 1970, Scheifele [1,2] designed an algorithm able to integrate
without truncation error the harmonic oscillator. The solution was
expressed as series of the so-called G-functions. Scheifele’s G-func-
tions were used by Martín and Ferrándiz [3,4] to introduce a
multistep fixed step method (SMF) to integrate perturbed
harmonic oscillators. In last years, Vigo-Aguiar and Ferrándiz,
introduced new VSVO multistep methods [5,6] using scalar G-func-
tions, and with additional good properties.

On the other hand, around 1970, Stiefel and Bettis [7–9] intro-
duced several fixed step multistep method. Stiefel and Bettis meth-
od changes a pair of coefficients of a classic Adams–Bashforth,
Adams–Moulton [10] or Störmer–Cowell [11] algorithms for each
oscillation that is exactly integrated. A general theory including
those and other special integrators was developed by Vigo-Aguiar
and Ferrándiz [5].

In the present paper our attention is focused on the issue of the
numerical integration of equations of the form:

x00 þ a2x ¼ e � f ðxðtÞ; x0ðtÞ; tÞ; ð1Þ
xð0Þ ¼ x0 and x0ð0Þ ¼ x00;

where a is a constant coefficient, e being a small parameter of
perturbation.

In [12], a numerical method is presented aiming at solving (1),
which is consistent with the proper limiting behaviour of the per-
turbed solution because it integrates exactly the unperturbed
problem. The most important asset is that it substantially reduces
the accumulated error in many circumstances and values of the
integration parameters. This method of u-functions series not only
integrates exactly the homogeneous problem, but also enables to
eliminate somehow the perturbation term. In spite of the good
behaviour of u-functions series method, it is only practical for
use in cases in which the function of perturbation is simple, given
the complexity of the preliminary calculations needed to obtain
the recurrence formulas.

This problem is resolved in this article by converting the u-
functions series method into a multistep scheme. The derivatives
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will be substituted by expressions in term of divided differences
and next to some coefficients dij, elements of a matrix A�t

p , whose
recurrence relation does not know. Similarly for the implicit case,
it will be denoted by B�t

p , the matrix whose coefficients dij are
extracted.

Once the matrices A�t
p and B�t

p are know in, we will set up a
recurrent calculus, through matrices Sp;n and Sp;nþ1 .

The general good behaviour and the long term accuracy of the
new method is shown through several examples, including the
Duffing problem [3] and the highly oscillatory Denḱ’s problem
[13] and Petzold́’s problem [14,15]. The comparisons show that
the new methods provide significantly higher accuracy and effi-
ciency than a selection of classic well-reputed general-purpose
integrators as GEAR, MGEAR or LSODE.

2. Construction of u-functions and numerical methods

If we consider the IVP (1) corresponding to one forced oscilla-
tion of frequency a2 and function of perturbation f ¼ f ðxðtÞ; x0ðtÞ; tÞ.

Let us assume for the sake of simplicity that f and therefore the
solution xðt; x0; x00; t0Þ obtained with the initial conditions is analyt-
ical in I ¼ ½�T; T�. If we suppose that the partial derivatives of the
function of perturbation are continuous in the independent vari-
ables x; x0; t in I; with these conditions, the function of perturbation
reduces along the solution to a function:

gðtÞ ¼ f ðxðt; x0; x00; t0Þ; x0ðt; x0; x00; t0Þ; tÞ ð2Þ

that can be expressed gðtÞ as an convergent power series.
By applying the differential operator D2 þ b2 at the IVP (1), in

order to cancel the perturbation, we obtain

D4xþ ða2 þ b2ÞD2xþ a2b2x ¼ ðD2 þ b2ÞegðtÞ ð3Þ

at the solution xðt; x0; x00; t0Þ.
The two first initial values are

xð0Þ ¼ x0; x0ð0Þ ¼ x00 ð4Þ

and from IVP(1) is deduced:

x00ð0Þ ¼ �a2x0 þ ef ðx0; x00;0Þ ¼ x000 ð5Þ

and as

x000ð0Þ ¼ �a2x00 þ er
!

f ðx0; x00; 0Þ � ðx00; x000;1Þ ¼ x0000 : ð6Þ

A new IVP is considered:

ðD2 þ b2ÞðD2 þ a2Þx ¼ ðD2 þ b2ÞegðtÞ; ð7Þ

xð0Þ ¼ x0;

x0ð0Þ ¼ x00;

x00ð0Þ ¼ x000;

x000ð0Þ ¼ x0000 :

The notation used is

L4ðxÞ ¼ ðD2 þ b2ÞðD2 þ a2Þx: ð8Þ

Based on the Taylor expansion we can write

gðtÞ ¼
X1
n¼0

cn
tn

n!
ð9Þ

and (9) at (7) replacing, the IVP (7) is expressed as

L4ðxÞ ¼ e
X1
n¼0

ðcnþ2 þ b2cnÞ
tn

n!
: ð10Þ

The solution xðtÞ for the IVP (7) might be split in two parts: that cor-
responding to associated homogeneous IVP (7), xHðtÞ, and that non-

linear inhomogeneous equation with vanishing initial values,
respectively.

In order to obtain a solution to the inhomogeneous equation,
we recall that it can be cast as a superposition of solutions to the
sequence of initial value problems:

L4ðxnÞ ¼
tn

n!
xnð0Þ ¼ x0nð0Þ ¼ x00nð0Þ ¼ x000n ð0Þ ¼ 0: ð11Þ

If we define: WnðtÞ ¼ xn, for n P 0, yields

L4ðWnðtÞÞ ¼
tn

n!

Wnð0Þ ¼ W0nð0Þ ¼ W00nð0Þ ¼ W000n ð0Þ ¼ 0: ð12Þ

It is easy to prove that

W0nðtÞ ¼ Wn�1ðtÞ for n P 1 ð13Þ

and

WnðtÞ þ ða2 þ b2ÞWnþ2ðtÞ þ a2b2Wnþ4ðtÞ ¼
tnþ4

ðnþ 4Þ! for n P 0:

ð14Þ

The explicit and analytical expression for the Wn-functions depend
on the frequencies a and b.According to them five cases must be
discussed:

2.1. Case I. (a – 0, b – 0, a – b)

The WnðtÞ-functions can be expressed as a series

WnðtÞ ¼
X1
m¼0

ð�1Þm

ð2mþ 4þ nÞ!
b2mþ2 � a2mþ2

b2 � a2
t2mþ4þn: ð15Þ

The derivation is simple. It is enough to suppose that

WnðtÞ ¼
X1
k¼0

b½n�k tk: ð16Þ

By substituting it into (12) and identifying coefficients we ob-
tain the equation

ðkþ 4Þðkþ 3Þðkþ 2Þðkþ 1Þb½n�kþ4 þ ða2 þ b2Þðkþ 1Þðk

þ 2Þb½n�kþ2 þ a2b2b½n�k

¼ dk;n

k!
ð17Þ

with the initial conditions

b½n�0 ¼ b½n�1 ¼ b½n�2 ¼ b½n�3 ¼ 0: ð18Þ

Let us remark that the leading term of Wn has the order tnþ4. A
more compact form, can be get through suitable changes of the
dummy indices. It results

WnðtÞ ¼
X1
m¼0

b½n�m t2mþ4þn; ð19Þ

where

b½n�m ¼
ð�1Þm

ð2mþ 4þ nÞ!
b2mþ2 � a2mþ2

b2 � a2
: ð20Þ

In order to obtain the solution to the homogeneous equation,
the ‘‘canonical” IVṔ’s is introduced:

L4ðuiðtÞÞ ¼ 0; ð21Þ
ujÞ

i ð0Þ ¼ di;j i; j ¼ 0;1;2;3;

di;j being Kronecker deltas.
The functions unðtÞ for n ¼ 0;1;2;3, can be expressed for the

trigonometric functions
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