
Testing blind separability of complex Gaussian mixtures

David Ramírez a,n, Peter J. Schreier a, Javier Vía b, Ignacio Santamaría b

a Signal and System Theory Group, Universität Paderborn, Paderborn, Germany
b Communications Engineering Dept., University of Cantabria, Santander, Spain

a r t i c l e i n f o

Article history:
Received 11 February 2013
Received in revised form
23 June 2013
Accepted 22 August 2013
Available online 30 August 2013

Keywords:
Complex independent component
analysis (ICA)
Circularity coefficients
Generalized likelihood ratio test (GLRT)
Hypothesis test
Maximum likelihood (ML) estimation
Wilks' theorem

a b s t r a c t

The separation of a complex mixture based solely on second-order statistics can be
achieved using the Strong Uncorrelating Transform (SUT) if and only if all sources have
distinct circularity coefficients. However, in most problems we do not know the circularity
coefficients, and they must be estimated from observed data. In this work, we propose a
detector, based on the generalized likelihood ratio test (GLRT), to test the separability of a
complex Gaussian mixture using the SUT. For the separable case (distinct circularity
coefficients), the maximum likelihood (ML) estimates are straightforward. On the other
hand, for the non-separable case (at least one circularity coefficient has multiplicity
greater than one), the ML estimates are much more difficult to obtain. To set the thres-
hold, we exploit Wilks' theorem, which gives the asymptotic distribution of the GLRT
under the null hypothesis. Finally, numerical simulations show the good performance of
the proposed detector and the accuracy of Wilks' approximation.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The blind separation of a linear mixture of complex
independent sources is an important problemwith a range
of applications, e.g. in biomedical image analysis. See
[1–3], and references therein. The Strong Uncorrelating
Transform (SUT) allows blind separation based solely
on second-order statistics [4–6], provided that these
sources correlate with their complex conjugates and that
the strengths of these correlations differ from source to
source. A complex random variable x that correlates with
its complex conjugate xn has a nonzero complementary
covariance E½x2� and is called improper or noncircular.

The circularity coefficient k¼ jE½x2�j=E½jxj2� takes values
between 0 and 1 and measures how noncircular or
improper a random variable is. This may be illustrated by

the density contours of a univariate complex Gaussian
random variable. These contours are ellipses, and the
shape of these ellipses is controlled by the circularity
coefficients [7]. If a Gaussian random variable has circu-
larity coefficient k¼0, then its probability density contours
are circular [8–10]; if it has circularity coefficient k¼1,
then its probability density contours degenerate into a line
in the complex plane.

The circularity coefficients are invariant to linear trans-
formations. Thus, a linear mixture of complex sources has
the same set of circularity coefficients as the original
sources. This invariance property is exploited by the SUT
for blind separation. A necessary and sufficient condition
for separability using the SUT is that all circularity coeffi-
cients of the sources are distinct. It thus makes intuitive
sense that separation of the mixture should be easier if the
circularity coefficients are more clearly separated, and
it should become more difficult if the circularity coeffi-
cients are more clustered. This intuition is supported
theoretically by [11].

In practice, the circularity coefficients are not known a
priori and must be estimated from the observed data.
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We are thus confronted with the question whether or not a
mixture is separable, based on a given set of observations.
This paper deals with this problem by deriving a general-
ized likelihood ratio test (GLRT) to decide whether a
mixture of complex-valued improper signals is separable
or not. The test boils down to testing whether all circular-
ity coefficients are distinct or whether there are circularity
coefficients with multiplicity greater than one. This paper
extends preliminary results reported at a conference [12],
where we did not include any details of the rather lengthy
proofs.

The structure of our paper is as follows. In Section 2,
we review how the SUT enables ICA of complex sources.
In Section 3, we formally define our hypothesis testing
problem, and in Section 4, we derive the GLRT. Finally,
Section 5 presents simulation results that illustrate the
performance of our detector.

1.1. Notation

In this paper we use bold-face upper-case letters to
denote matrices, with elements xk;l or ½X�k;l; bold-face
lower-case letters for column vectors, and light-face lower
case letters for scalar quantities. The superscripts ð�ÞT and
ð�ÞH denote transpose and Hermitian transpose, respec-
tively. The determinant and trace of a matrix A will be
denoted, respectively, as detðAÞ and trðAÞ. The notation
AACM�N ðAARM�NÞ will be used to denote that A is a
complex (real) matrix of dimension M � N. For vectors, the
notation xACM ðxARMÞ denotes that x is a complex (real)
vector of dimension M, and x� CN ðμ;RÞ indicates that x is
a complex circular Gaussian random vector of mean μ and
covariance matrix R. The expectation operator will be
denoted as E½��. The notation IL is used to denote the
identity matrix of size L� L, whereas IL�P is a L� P matrix
with ones in the main diagonal and zeros elsewhere. The
matrix 0L�P denotes the zero matrix of size L� P. We use
A1=2 to denote the positive semidefinite square root matrix
of the positive semidefinite matrix A. Finally, diagðAÞ is a
diagonal matrix formed by the main diagonal of A and
diagðaÞ is a diagonal matrix formed by the vector a.

2. ICA from second-order statistics

In this section, we present a review of independent
component analysis (ICA) of complex sources based solely
on second-order statistics (SOS). This technique is based
on the SUT [4–6]. Let us consider the instantaneous
noiseless linear complex ICA model

x¼As; ð1Þ
where xACP are the measurements, AACP�P is the
unknown mixing matrix, assumed to have full rank, and
sACP are zero-mean sources, which are assumed to be
independent. Note that there is the same number of
sources and measurements. This is a safe assumption for
overdetermined problems since we can always apply a
dimensionality reduction technique based on principal
component analysis (PCA). On the other hand, the case of
fewer measurements than sources can be ignored since
there exists no solution using only SOS.

The idea behind ICA is to recover s without knowledge
of A, utilizing only the linearity of the model and the
independence of the sources. For the linear model (1), the
sources are recovered as

ŝ ¼ Bx; ð2Þ
where B is the separating matrix. Since the technique
is based only on the independence of the sources, there
exist some ambiguities. Any scaling of s, i.e., multiplication
with a diagonal matrix, and any reordering of the compo-
nents of s, i.e., multiplication with a permutation matrix,
preserves independence. Hence, we can obtain B only up
to a multiplication with a monomial matrix, which is the
product of a permutation and a diagonal matrix.

Typically, ICA for real sources is based on higher-order
statistics, and if there is more than one Gaussian source, it
is only possible to recover s if the sources have some
temporal (sample-to-sample) correlation with different
autocorrelation functions [13]. Temporally uncorrelated
complex sources, on the other hand, may be separated
based on SOS, provided that these satisfy certain condi-
tions. For complex random vectors, all the SOS information
is contained in two matrices: the covariance matrix
Rss ¼ E½ssH� and the complementary covariance matrix
~R ss ¼ E½ssT � [6]. The assumption of independent sources
implies a diagonal structure for both the covariance matrix
Rss and the complementary covariance matrix ~R ss. More-
over, taking into account the ambiguities of the ICA
problem, we may even make the stronger assumptions
that Rss ¼ I and ~R ss ¼K, where K¼ diagðk1;…; kPÞ and
1Zk1Z⋯Z kPZ0. The diagonal elements ki are the so-
called circularity coefficients [5], which we will derive
momentarily. Under these assumptions, the covariance
matrix of the measurements is

Rxx ¼ E½xxH � ¼ ARssA
H ¼AAH ; ð3Þ

and the complementary covariance matrix is

~Rxx ¼ E½xxT � ¼ A ~R ssA
T ¼AKAT : ð4Þ

To recover s, the separating matrix B must simultane-
ously diagonalize Rxx and ~Rxx, i.e., both BRxxBH and B ~RxxBT

must be diagonal. To this end, we first compute the
coherence matrix

C¼ R�1=2
xx

~RxxðRn

xxÞ�H=2 ¼ R�1=2
xx

~RxxR�T=2
xx ; ð5Þ

which appears in the canonical correlation analysis (CCA)
[14] of the vectors x and xn [6]. Then we obtain the Takagi
factorization [15] of C, which is a special singular value
decomposition for complex and symmetric (not Hermitian
symmetric) matrices C¼ CT :

C¼ FKFT ; ð6Þ
where FACP�P is a unitary matrix and K¼ diagðk1;…; kPÞ
is a diagonal matrix that contains the circularity coeffi-
cients. These circularity coefficients are the canonical
correlations between x and xn. The separating matrix is
now given by the SUT

B¼ FHR�1=2
xx : ð7Þ

The complex ICA model is separable if and only if all circu-
larity coefficients are distinct [4,5]. Hence, it is possible to
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