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a b s t r a c t

Deterministic sensing matrices are useful, because in practice, the sampler has to be a
deterministic matrix. It is quite challenging to design a deterministic sensing matrix with
low coherence. In this paper, we consider a more general condition, when the determi-
nistic sensing matrix has high coherence and does not satisfy the restricted isometry
property (RIP). A novel algorithm, called the similar sensing matrix pursuit (SSMP),
is proposed to reconstruct a K-sparse signal, based on the original deterministic sensing
matrix. The proposed algorithm consists of off-line and online processing. The goal of the
off-line processing is to construct a similar compact sensing matrix containing as much
information as possible from the original sensing matrix. The similar compact sensing
matrix has low coherence, which guarantees a perfect reconstruction of the sparse vector
with high probability. The online processing begins when measurements arrive, and
consists of rough and refined estimation processes. Results from our simulation show that
the proposed algorithm obtains much better performance while coping with a determi-
nistic sensing matrix with high coherence compared with the subspace pursuit (SP) and
basis pursuit (BP) algorithms.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Compressed sensing has received considerable attention
recently, and has been applied successfully in diverse fields,
e.g. image processing [1,2], underwater acoustic communica-
tion [3], wireless communication [4] and radar systems [5–9].
The central goal of compressed sensing is to capture attributes
of a signal using very few measurements. In most work to
date, this broader objective is exemplified by the important
special case inwhich a K-sparse vector xARN (with N large) is
to be reconstructed from a small number M of linear mea-
surements with KoMoN. K-sparse signals are the signals
that can be represented by K significant coefficients over an
N-dimensional basis. This can be compactly described via

y¼Φxþe: ð1Þ

Here, yARM denotes a measurement vector, Φ represents an
M�N sensing matrix, and e is an M�1 noise vector. The two
fundamental questions in compressed sensing are as follows:
how to construct suitable sensing matrix Φ, and how to
recover the K-sparse vector x from the measurement vector
y efficiently. Tables A1 and A2 in Appendix A list notations for
variables used in the paper.

In early work of compressed sensing, the entries of the
sensing matrix Φ are generated by an independent and
identically distributed (i.i.d) Gaussian or Bernoulli process,
or from random Fourier ensembles [10–12]. In general, the
exact solution to the above second question is shown to be
an NP-hard problem [13,14]. If the number of samples (M)
exceeds the lower bound of M4OðK log ðN=KÞÞ, l1 mini-
mization (e.g. BP algorithm) can be performed instead
of the exact l0 minimization with the same solution for
almost all the possible inputs [14]. An alternative approach
to sparse signal recovery is based on the idea of iterative
greedy pursuit, and tries to approximate the solution to
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l0 minimization directly. The greedy algorithms include
matching pursuit (MP) [15], orthogonal matching pursuit
(OMP) [16], regularized OMP (ROMP) [17], stagewise OMP
(StOMP) [18], SP [19], compressive sampling matching
pursuit (CoSaMP) [20] and backtracking-based matching
pursuit (BAOMP) [21], etc. The reconstruction complexity
of these approximate algorithms is significantly lower than
that of BP algorithm.

In compressed sensing, one of the well-studied condi-
tions on the sensing matrix, which guarantees stable recov-
ery for a number of reconstruction algorithms, is the RIP
[13,14]. If a sensing matrix Φ whose column vectors have
unit norm and satisfies

ð1�δK Þ‖x‖22r‖Φx‖22rð1þδK Þ‖x‖22 ð2Þ
for all possible K-sparse vectors with restricted isometry
constant (RIC) δK , then Φ is said to obey K-RIP with δK . The
RIP with suitable constant δK guarantees perfect reconstruc-
tion [13,14], but it is very hard to check whether a sensing
matrix satisfies RIP or not.

Coherence, the maximal correlation between two col-
umns in a sensing matrix, is also a well-known perfor-
mance measure for sensing matrices. For a matrix Φ with
columns φ1;φ2;…;φN , the coherence of Φ is defined as

μðΦÞ ¼ max
1r i;jrN and ia j

jφT
i φjj

Jφi J � Jφj J
: ð3Þ

Coherence plays a central role in the sensing matrix con-
struction, because small coherence implies the RIP [22].

In this paper, we are interested in deterministic sensing
matrices. Deterministic sensing matrices are useful because
in practice, the sampler has to be a deterministic matrix.
Although random matrices perform quite well on the
average, there is no guarantee that a specific realization
works. For the deterministic approaches, the Vandermond
matrices seem to be good options, since any K columns of a
K�N Vandermond matrix are linearly independent. How-
ever, when N increases, the constant δK rapidly approaches 1
and some of the K�K submatrices become ill-conditioned
[23]. A connection between the coding theory and sensing
matrices is established in [24] where second order Reed–
Muller codes are used to construct bipolar matrices. How-
ever, they lack a guarantee on the RIP order. In [25], the
authors propose a series of deterministic sensing matrices,
the binary, bipolar, and ternary compressed sensing matrices
which satisfy the RIP condition.

The key concept of coherence is extended to pairs of
orthonormal bases. This enables a new choice of the
sensing matrices: one simply selects an orthonormal basis
that is incoherent with the sparsity basis, and obtains
measurements by selecting a subset of the coefficients of
the signal in the chosen basis [26]. This approach has
successful applications in radar systems [9,27], where an
additional sensing matrix H is introduced and the received
signal is compressed further by making nonadaptive,
linear projections of the direct data sampled at the Nyquist
frequency. However, neither of these algorithms mention
the hardware implementation of the additional sensing
matrix, which is very complex and expensive.

In practice, it is challenging to design a deterministic
sensing matrix having low coherence. In this paper, we

consider a more general condition when the deterministic
sensing matrix has high coherence and does not satisfy the
RIP condition. A novel algorithm, called the SSMP algo-
rithm, is proposed to reconstruct the K-sparse signal based
on the original deterministic sensing matrix. The proposed
algorithm consists of two parts: the off-line processing and
the online processing. The goal of the off-line processing is
to construct a similar compact sensing matrix with low
coherence, which contains as much information as possi-
ble from the original sensing matrix. The online processing
begins when the measurements arrive, which consists of a
rough estimation process and a refined estimation process.
In the rough estimation process, an SP algorithm is used
to find a rough estimate of the true support set, which
contains the indices of the columns that contribute to
the original sparse vector. Three kinds of structures
of the estimated support set are considered, and three
individual refined estimation processes are carried out
under these three conditions. We observe from simulation
results that the proposed algorithm obtains much better
performance when coping with the deterministic sensing
matrix with high coherence compared with the SP and BP
algorithms.

The paper is organized as follows. Section 2 introduces
the proposed similar sensing matrix pursuit algorithm.
Section 3 presents simulation results, and Section 4 sum-
marizes conclusions.

2. Similar sensing matrix pursuit (SSMP) algorithm

Recently, algorithms used to cope with deterministic
sensing matrices focus on designing a sensing matrix
which satisfies the RIP condition (or with low coherence).
However, in practice it is challenging to design a determi-
nistic sensing matrix having a very small restricted iso-
metry constant (coherence). In this paper, we consider a
more general condition when a deterministic sensing
matrix has high coherence and does not satisfy the RIP
condition. We concentrate in developing a novel recon-
struction algorithm rather than building a deterministic
sensing matrix with low coherence. A novel algorithm
called the SSMP is proposed to reconstruct the K-sparse
signal, based on the original deterministic sensing matrix.

This section introduces the proposed SSMP algorithm.
First, the key component of the proposed algorithm,
the similar compact sensing matrix, is introduced in
Section 2.1, and then the complete algorithm is described
in Section 2.2. The complexity analysis of the proposed
algorithm is presented in Section 2.3.

2.1. Construction of the similar compact sensing matrix

The construction process of the similar compact sen-
sing matrix is based on the similarity analysis of the
original sensing matrix. In this paper, similarity is defined
as the absolute and normalized inner product between any
two different columns of the original sensing matrix Φ:

λðφi;φjÞ ¼
jφT

i φjj
Jφi J � Jφj J

; 1r i; jrN and ia j: ð4Þ
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