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This paper presents a bi-minimax method for designing an odd-order variable fractional-
delay (VFD) finite-impulse-response (FIR) digital filter such that both the peak errors of its
variable frequency response (VFR) and VFD response can be simultaneously suppressed.
The bi-minimax design iteratively minimizes a mixed error function involving both the
VFR-peak-error and VFD-peak-error subject to the second-order-cone (SOC) constraints
on the VFR errors and linear-programming (LP) constraints on the VFD errors. As
compared with the existing SOC-based minimax design that minimizes the VFR-peak-
error only, this odd-order bi-minimax design suppresses the VFD-peak-error and flattens
both the VFR errors and VFD errors simultaneously. Consequently, both the two errors are
made nearly equi-ripple (bi-equiripple). An example is given for showing the simulta-
neous suppression of the two kinds of peak errors and verifying the effectiveness of the
odd-order bi-minimax design approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Variable fractional-delay (VFD) digital filters are useful
in various signal processing applications such as sampling
rate conversion [1]. So far, many efficient methods have
been developed for designing both finite-impulse-response
(FIR) and all-pass VFD digital filters. Most of the existing
design methods obtain VFD filters by approximating the
ideal variable frequency response (VFR) in the weighted-
least-squares (WLS) sense or minimax sense [2-16]. The
WLS design minimizes the integral-squared-error of VFR
response, whereas the minimax design minimizes the VFR-
peak-error (maximum absolute VFR error). Generally speak-
ing, there is a trade-off between the two errors, i.e., one
cannot minimize the two errors simultaneously. In other
words, neither the WLS design nor the minimax design can
minimize the total error energy and VFR-peak-error simul-
taneously. As far as the minimax design is concerned,
minimizing the VFR-peak-error usually results in a large
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VFD-peak-error, which may not be acceptable in practical
applications if the VFD-peak-error is too large. Therefore, it
is desirable to develop a new minimax method that can
suppress the VFD-peak-error while maintaining the VFR-
peak-error at an acceptable level. In [11], an odd-order
bi-minimax design is presented for suppressing the VFD-
peak-error of an odd-order FIR VFD filter by approximating
the non-linear constraints on the VFD errors as bi-linear
constraints and then an iterative alternating optimization
scheme is proposed for solving the non-linear bi-minimax
design problem. Originally, such a bi-minimax design is a
non-linear minimization problem because the constraints
on the VFD errors are highly non-linear.

To solve this non-linear problem, we first linearize the
non-linear constraints as linear ones and then solve the
bi-minimax design. This paper generalizes the odd-order
bi-minimax design approach in [11] for improving the
accuracy of the VFD-peak-error suppression. The basic idea
is to utilize a weighting function for the VFD error and
iteratively updating the weighting function such that the
VFD errors are made almost flat. As compared with [11], the
non-linear constraints on the VFD errors are formulated in a
different way through involving the denominator term in
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the VFD error function. By enhancing these two aspects, the
VFD-peak-error can be further suppressed as compared
with the primary (plain) odd-order bi-minimax design
[11]. Therefore, this denominator-involved reweighted
odd-order bi-minimax design can achieve a more accurate
odd-order bi-minimax design than the plain one that does
not use the denominator in the VFD error function and
weighting function.

The key point of the bi-minimax design is to minimize a
mixed error function that involves both the VFR-peak-error
and the VFD-peak-error through using a scaling factor. This
scaling factor can be adjusted to control the relative weights
of the two peak errors and thus control the magnitudes of
the two peak errors. Minimizing the mixed error function
subject to the second-order-cone (SOC) constraints on the
VFR errors and the linearized constraints on the VFD errors
leads to an optimal bi-minimax solution. This bi-minimax
problem can be efficiently solved by using the well-known
software SeDuMi [17]. An odd-order design example is
provided for illustrating the performance improvement over
the existing second-order-cone (SOCP) design and the plain
odd-order bi-minimax design [11] that ignores the denomi-
nator term in the VFD error expression as well as does not
use a weighting function.

2. Transfer function and error expressions

The ideal frequency response of an odd-order VFD filter
is given by

Hi(w, d) = e~id (1)

where we[0,ax] is the normalized angular frequency,
de[0, 1] is the VFD parameter, and the parameter a€(0, 1]
specifies the passband edge of interest. To exploit the
coefficient symmetry, we perform the substitution

d :% +p. pe[-05,05] 2)

and change the original VFD parameter d into a new
parameter p. By substituting (2) into (1), we yield

Hi(w, d) = e /2 Hy(w, p) A3)
with
Hy(w, p) =e P 4

To approximate (3), we utilize the variable transfer func-
tion

N+1
Hzp)= ¥ hu(p)z™ (5)
n=-N
by parameterizing the coefficients h,(p) as
M
hn(p)= % am,mp™ (6)
m=0

where h,(p) are the M-th degree polynomials of the VFD
parameter p. Thus,

N+1 M
Hzp= Y Y amnmz"p"

n=-Nm=0

Me 2 Me 2m—1
= 3 Fn@p™"+ ¥ Gu@p™" ™

where M., M, are defined as

e[t el

L ], '] are floor and ceiling functions, respectively. Also,
the odd-order fixed-coefficient FIR digital filters
N+1
Fn@= Y amn2mz™"
N

n=—

N+1
Gn(@= XY am2m-1z™" 9
N

n=—

are called sub-filters in the Farrow structure [1]. To reduce
the VFD filter complexity, we can exploit the coefficient
symmetry

a(l-n,m)=(—=1)" - a(n, m) (10)

in the odd-order VFD filter design [4]. That is, the sub-
filters Fn(z) have even-symmetric coefficients, and Gy (2)
have odd-symmetric (anti-symmetric) coefficients. Substi-
tuting (10) into (9) obtains

Fn(z) =2""2Fin(2)
Gn(@) =2"12Gn(2)
with

~ N+1
Fm@= 3 an2m)z""1/? 427012
n=1
A N+1
Cm@=— Y amn,2m-1)z" 1P _z-(-1/2,
n=1

Thus, the transfer function (7) can be rewritten as

H@zp) =z""*H(@zp) (11

with

2 Me 2 Mo 2m—1

Hzp = Y Fu@p™+ X Gmn@p~™ . (12)
m=0 m=1

By comparing (3) with (11), it is clear that we only need to
approximate H(w,p) in (4) by using H(z, p). Furthermore,
the sub-filters Fn(z) and Gn(z) do not need to have the
same orders because using different-orders may further
reduce the VFD filter complexity in terms of the number of
independent multipliers, which has been shown in the
odd-order weighted-least-squares (WLS) design [4].
Assume that the order of I:‘m(z) is Nem, and the order of
6,,,(2) is Nom, where e denotes even-symmetric, and o
denotes odd-symmetric. Then, the frequency responses of
the different-orders F m(z) and Cm(z) can be rewritten as

A Nem+1 1
Fu(@)= Y bem(n) cos <n— i) o=l (@)bem
n=1

n Nom+1 1
Gt =)+ S Bon( sin (=3 )= (= - sh@)bon

(13)
where
bem(n)=2a(n,2m), n=1,2,...,(Nem + 1)
bom(n)=2a(n,2m-1), n=1,2,...,(Nom + 1) (14)

(@)= {COS (%) cos <37w> .+ COS <Nem +%) w}
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