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a b s t r a c t

Recently a generalized hidden Markov model (GHMM) was proposed for solving the
information fusion problems under aleatory and epistemic uncertainties in engineering
application. In GHMM, aleatory uncertainty is captured by the probability measure
whereas epistemic uncertainty is modeled by generalized interval. In this paper, the
problem of how to train the GHMM with a small amount of observation data is studied. An
optimization method as a generalization of the Baum–Welch algorithm is proposed. With
a generalized Baum–Welch′s auxiliary function and the Jensen inequality based on
generalized interval, the GHMM parameters are estimated and updated by the lower
and upper bounds of observation sequences. A set of training and re-estimation formulas
are developed. With a multiple observation expectation maximization (EM) algorithm, the
training method guarantees the local maxima of the lower and the upper bounds. Two
case studies of recognizing the tool wear and cutting states in manufacturing is described
to demonstrate the proposed method. The results show that the optimized GHMM has a
good recognition performance.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The hidden Markov model (HMM) with the capability of
statistical learning and classification has beenwidely applied
in speech recognition [1,2], character recognition [3] and
fault diagnosis [4]. Yet the HMM does not differentiate two
types of uncertainties. Aleatory uncertainty is inherent
randomness and irreducible variability in nature, whereas
epistemic uncertainty is reducible because it comes from the
lack of knowledge. The sources of epistemic uncertainty
cannot be ignored in engineering applications. All models
have errors because approximations are always involved
in model construction, and all experimental measurements

contain systematic errors. In order to improve the robust-
ness of analysis, the effect of epistemic uncertainty should
be considered separately from the one from aleatory uncer-
tainty. Given the very different sources of the two uncer-
tainty components, we use two different forms to distinguish
the two. Aleatory uncertainty is represented as probability,
whereas interval is used to capture epistemic uncertainty.
Intervals naturally capture the measurement errors, as well
as the lower and upper bounds of model errors from the
incomplete knowledge, without the assumptions of prob-
ability distributions.

Recently a generalized interval probability which com-
bines generalized intervals with probability measures was
proposed by Wang [5]. The generalized interval is used to
represent the epistemic uncertainty component. Compared
to the classical interval, generalized interval based on the
Kaucher arithmetic [6] has better algebraic properties so
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that the calculus can be simplified. In addition, a generalized
hiddenMarkov model (GHMM), as a generalization of HMM,
was proposed for statistical learning and classification with
both uncertainty components [7]. In GHMM, the precise
values of a probability for HMM are replaced by the general-
ized interval probabilities.

Similar to HMM, the optimization of GHMM parameters
is also the central problem in model calibration [8]. In this
paper, an optimization method, which is based on a gen-
eralized Jensen inequality and a generalized Baum–Welch
algorithm (GBWA) in the context of generalized interval
probability theory, is proposed for training GHMM. The
parameters of GHMM are estimated and updated by using
GBWA. Different from the multiple observation training in
HMM [9], the GHMM parameters are estimated and
updated by the given lower and upper bounds of observa-
tion sequences. The lower and upper bounds capture the
epistemic uncertainty associated with the observation, such
as systematic error and bias. Based on a generalized Baum–

Welch′s auxiliary function, a set of training equations are
developed by optimizing the objective function. A set of
GHMM re-estimated formulas has been deduced by the
unique maximum of the objective function. The proposed
GBWA optimization method takes advantage of the good
algebraic property in the generalized interval probability,
which provides an efficient approach to train the GHMM. In
order to demonstrate the performance of the proposed
optimization method for training GHMM, two cases of tool
state and cutting state recognition in manufacturing pro-
cesses is provided. The tool states and cutting states are
recognized by the GBWA training algorithm of GHMM.

In the remainder of this paper, Section 2 provides the
overview of relevant work in generalized interval, general-
ized interval probability, and GHMM. Section 3 introduces
a generalized Jensen inequality. Section 4 introduces
optimization methods in training process of the GHMM.
Section 5 demonstrates the application for the tool state
and cutting state recognition based on the GBWA. Finally,
Section 6 is the conclusion.

2. Background

2.1. Generalized interval

The generalized interval is an extension of the classical
interval with better algebraic and semantic properties
based on the Kaucher arithmetic. A generalized inter-
valx : ¼ ½x; x�, (x; x ∈ℝ) is defined by a pair of real numbers
as x and x [10,11]. The generalized interval is not con-
strained by that the lower bound should be less than or
equal to the upper bound. For instance, both [0.1, 0.3] and
[0.3, 0.1] are valid in generalized interval. Interval [0.1, 0.3]
is called proper, whereas interval [0.3, 0.1] is called
improper. The relationship between proper and improper
intervals is established with the operator dual, defined
asdualx : ¼ ½x; x�. Operator pro returns the classical proper
interval. For instance, pro½0:3;0:1� ¼ ½0:1;0:3�, and pro½0:1;
0:3� ¼ ½0:1;0:3�.

Let x : ¼ ½x; x�, where x≥0; x≥0 ðx; x∈ℝþÞ, andy : ¼
½y; y�, where y≥0; y≥0 ðy; y∈ℝþÞ, be two non-negative
interval variables. Let fðtÞ ¼ ½f ðt Þ; f ðtÞ� be a generalized

interval function, where t¼ ½t ; t� is an interval variable.
The arithmetic operations of generalized intervals based
on the Kaucher arithmetic are defined as follows:

x þ y¼ ½x þ y; x þ y�; ð1Þ

x�dualy¼ ½x�y; x�y�; ð2Þ

x � y¼ ½x � y; x � y�; ð3Þ

x=dualy¼ ½x=y; x=y�; y≠0; y≠0 ð4Þ

log x¼ ½log x; log x�; x≠0; x≠0 ð5Þ
Note that the boldface symbols represent generalized

intervals in this paper. The greater than or equal to partial
order relationship between two generalized intervals is
defined as

½x; x�≥½y; y�⇔x≥y∧x≥y: ð6Þ

2.2. Generalized interval probability

The generalized interval probability [5] is defined as
follows. Given a sample space Ω and a s—algebra Ȧ of
random events over Ω, the generalized interval probability
p∈Kℝ is defined as p: A-[0,1]� [0,1] which obeys the
axioms of Kolmogorov: (1) pðΩÞ ¼ ½1;1�;(2) ½0;0�≤pðEÞ≤
½1;1� ð∀E∈AÞ; and (3) for any countable mutually disjoint
events Ei∩Ej ¼Φði≠jÞ; pð∪n

i ¼ 1EiÞ ¼∑n
i ¼ 1pðEiÞ.

The most important property of the generalized inter-
val probability is the logic coherence constraint (LCC): That
is, for a mutually disjoint event partition ∪n

i ¼ 1Ei ¼Ω, ∑n
i ¼ 1

pðEiÞ ¼ 1. The calculus structure of generalized interval
probability is very similar to the one in the classical
probability. The computation is greatly simplified com-
pared to other interval probability representations such as
the Dempster–Shafer evidence theory [12].

2.3. Generalized hidden Markov model

The GHMM is a generalization of HMM in the context of
generalized interval probability theory. In GHMM, all
probability values of HMM are replaced by generalized
interval probabilities. A GHMM is defined as follows. The
values of hidden states are in the form of S¼ fS1; S2;…; SNg,
where N is the total number of possible hidden states. The
hidden state variable at time t is qt , where qt : ¼ ½q

t
; qt �.

The M possible distinct observation symbols are V ¼ fv1;
v2;…; vMg. The generalized observation sequence is in the
form of O¼ ðo1;o2;…;oT Þ where ot is the observation
value at time t. Note that the observations have the values
of generalized intervals as random sets. Equivalently the
lower and upper bounds can be viewed separately. O ¼
o1; o2;…; oT

� �
denotes the lower bound of the observation

sequence, and O ¼ ðo1; o2;…; oT Þ denotes the upper bound,
where the value of ot and ot (t¼1,…,T) can be any of
fv1; v2;…; vMg.

Let qt∈pro½qt
; qt � and ot∈pro½ot ; ot � be real-valued ran-

dom variables that are included in the respective interval-
valued random sets ½q

t
; qt � and½ot ; ot �⋅A¼ ðaijÞN�N .is the
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