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a b s t r a c t

This paper addresses the problem of distributed in-network estimation for a vector of
interest, which is sparse in nature. To exploit the underlying sparsity of the considered
vector, the ℓ1 and ℓ0 norms are incorporated into the quadratic cost function of the
standard distributed incremental least-mean-square (DILMS) algorithm, and some sparse
DILMS (Sp-DILMS) algorithms are proposed correspondingly. The performances of the
proposed Sp-DILMS algorithms in the mean and mean-square derivation are analyzed.
Mathematical analyses show that the Sp-DILMS outperforms the DILMS, if a suitable
intensity of the zero-point attractor is selected. Considering that such intensity may not be
easily determined in real cases, a new adaptive strategy is designed for its selection. Its
effectiveness is verified by both theoretical analysis and numerical simulations. Even
though the criterion for intensity selection is derived from the case that the observations
are white and Gaussian, simulation results show that it still provides an empirical good
choice if the observations are correlated regression vectors.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Distributed in-network estimation has recently aroused
considerable interest and been applied to many real-world
applications, such as signal and information processing,
target tracking and localization, precision agriculture and
environmental monitoring [1]. Considering a set of nodes
distributed over a geographic region, distributed estimation
manages the data collected from multiple nodes to extract
the information of interest [2–10]. Unlike the centralized
processing, which relies on a powerful centralized fusion
center to collect all the nodes' information, distributed
estimation allows each node to exchange information with
a subset of its neighbors for local computation. The informa-
tion of interest, for which usually expressed in a vector form,

is then estimated by exploiting the spatial diversity of
geographically distributed nodes as well as the temporal
diversity over the network. Since no data-fusion center is
needed and every node shares a certain computational
burden, distributed estimation is more robust, scalable and
thus more desirable for practical applications.

In the last decade, various distributed algorithms have
been proposed, such as incremental LMS [2–4], incre-
mental affine projection [5], diffusion LMS [6–9], diffusion
Kalman filtering and smoothing [10]. Although these
algorithms provide good solutions for general cases, the
prior characteristics of the vector of interest are ignored,
and each component is estimated in the same manner.
So, it is believed that there are rooms for performance
improvement if some distinct properties of the unknown
vectors are taken into account.

On the other hand, sparsity commonly exists in nature.
For example, in the context of target counting and locali-
zation, the position vector of the unknown point target
is usually sparse because the number of grids utilized to
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represent the target's position is much more comparing
to that of the target [11]. Besides, some communication
channels are also shown to be sparse [12–14]. Recent
advances in compressed sensing have shown that exploit-
ing the sparsity of the vector of interest contributes to
improving the performance of estimation in both conver-
gence and accuracy [15–22]. Unfortunately, these works
did not consider the designs of distributed solutions over
networks. To tackle with the problem, we have proposed
some sparse estimation algorithms based on diffusion
cooperative protocol using the regularized estimation [23].
By penalizing the cost function of the standard diffusion
LMS with some norm constraints, a zero-point attractor is
incorporated in the adaptive process so as to enforce the
sparsity of the vector of interest. In this paper, we further
extend the concept of sparse estimation into the incre-
mental cooperative protocol [2–4], and some sparse dis-
tributed incremental LMS (Sp-DILMS) are proposed.
Furthermore, an adaptive rule for selecting the intensity
of the sparse LMS is developed and its effectiveness is
verified with simulations.

The rest of the paper is organized as follows. In Section 2,
the problem of sparse vector estimation is formulated by
penalizing the cost function of the standard DILMS with
different norm constraints, and some Sp-DILMS algorithms
are developed. Their performances under the measures of
mean stability and mean-square errors are analyzed in
Section 3. In Section 4, an adaptive criterion for selecting
the intensity of the sparse LMS is proposed. The effectiveness
of the proposed algorithms is then verified with numerical
simulations in Section 5. Finally, conclusions are given in
Section 6.

2. Problem formulation and methodology

In this section, we formulate the problem of signal
estimation with a distributed incremental cooperative
manner by taking the sparsity of unknown vector into
account. In what follows, we let the boldface letters denote
the random quantities and normal font denote the non-
random (deterministic) quantities. For example, dkðiÞ is a
random observation quantity and dk(i) is a realization or
measurement for it. Capital letters denote matrices and
small letters denote vectors or scalars. The notation ð�ÞT
represents the transpose of a vector or a matrix with
real data.

2.1. Sparse distributed incremental LMS

Consider a network consisting of N nodes distributed over
a geographic region. At every time instant i, each node k
takes a scalar measurement dkðiÞ∈R and an M-dimensional
row vector uk;i∈RM , where both are real, forming a random
process fdk;ukg. The measurement dk(i) and the observations
uk;i are assumed to follow a linear model given by

dkðiÞ ¼ uk;iw
o þ vkðiÞ; ð1Þ

where wo ¼ ½wo
1;w

o
2;…;wo

M�T∈RM is an M-dimensional
sparse vector, vkðiÞ denotes a noise sequence with variance
s2v;k. Our target is to find a good estimate for wo by taking its
sparseness into account, based on the data fdk;ukg. In this

paper, the DILMS proposed in [2–4] is focused and its
cooperation strategy is depicted in Fig. 1. In DILMS, each
node k only cooperates with one of its immediate neighbors
ðk�1Þ in a cyclic pattern. It demands fewer communica-
tions and consumes relatively lower energy comparing to
other cooperation protocols. It is also worth to point out that,
although the incremental cooperative rule requires a Hamil-
tonian cycle through which signal estimates are sequentially
circulated from one node to another, it does not mean that
the nodes have to distribute with a cyclic topology. For more
details, readers can refer to [2–4].

For each node k, this estimation problem can be tackled
by minimizing the following ℓp�norm penalized cost
function with regard to its neighbor node ðk�1Þ

min
w

Jkðwk�1Þ ¼ E‖dk�ukwk�1‖22 þ γkξpðwk�1Þ; ð2Þ

where wk�1 denotes the estimate for wo at node ðk�1Þ,
ξpðwk�1Þ≜‖wk�1‖p denotes the ℓp�norm with regard to
wk�1, and γk≥0 is the regularization parameter to balance
the penalty of the norm constraint and the estimation
error. When γk ¼ 0, (2) equals to the cost function of the
conventional DILMS.

It is remarked that the optimization is performed
locally at each node based on (2). Although global optimi-
zation with cost function

min
w

JðwÞ ¼ ∑
N

k ¼ 1
JkðwÞ; ð3Þ

may be desirable, it requires a much higher communica-
tion cost as all the other nodes' information should be
available.

Following the procedure in the standard DILMS [2–4],
we can derive the steepest-descent algorithm with an
incremental implementation such that the recursion with
the ℓp�norm is determined by

wk;i ¼wk�1;i�μk½∇wJkðwk�1;iÞ�; ð4Þ

where μk40 is a step-size parameter to control the
convergence rate of the estimate, and ∇wJkðwk�1;iÞ denotes
the partial gradient ∇Jkð�Þ with respect to the local esti-
mate wk�1;i evaluated at node ðk�1Þ, which is given by1

∇wJkðwk�1;iÞ ¼ Ru;kwk�1;i�Rdu;k þ γk∂ξpðwk�1;iÞ; ð5Þ

Fig. 1. Distributed incremental cooperation structure over the networks.

1 In fact, there is a factor of 2 multiplying with the first term of the
right-hand side of (5) when the data are real. Here, we ignore it as it can
be absorbed into the step-size μk in (4).
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