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a b s t r a c t

Nonlinear dynamics of a class of symmetric lock range digital phase-locked loops (SLR-
DPLLs) has been investigated using nonlinear dynamical theoretical and computational
tools. It has been observed that the system shows a period doubling route to chaos.
For certain system parameters the loop exhibits intermittent behavior. The analytical
bifurcation analysis shows that inspite of the broader frequency acquisition range than a
conventional one the stability of the loop degrades appreciably when the input signal
frequency is less than the nominal frequency of the digitally controlled oscillator. The
system dynamics have been characterized by measuring the Lyapunov exponent and the
correlation dimension. Further it has been shown that the stability range of a SLR-DPLL
can be extended using a modified loop filter incorporating time delay feedback technique.
The modified SLR-DPLL (MSLR-DPLL) with this additional derivative control along with the
loop digital filter (LDF) shows faster convergence than the unmodified one for proper
choice of system design parameters. Consequently, the MSLR-DPLL becomes more suitable
for practical applications.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction:

Digital phase-locked loop (DPLL) is the core part of the
modern coherent communication technology. DPLLs find
wide application in frequency demodulators, frequency
synthesizers, data and clock synchronizer, modems, digital
signal processors, hard disk drives, etc. [1]. A DPLL is
essentially a discrete time nonlinear closed-loop system
that synchronizes the phase of a digitally controlled oscil-
lator (DCO) to the phase of an input signal. The increased
application of DPLLs has led to extensive researches to
improve its characteristics depending on its various appli-
cations. Starting from 1970 different DPLL architectures
have been proposed utilizing modified loop structures with
regard to specific performances such as extending the lock

range or the stable locked zone [2,3], enhancing the speed
of the loop [4,5], etc. and analyzed over the years. Among
these, a symmetric lock range DPLL (SLR-DPLL) was pro-
posed in [6] to alleviate some problems relating distortions
in the demodulated outputs when conventional DPLLs
(CDPLLs) are used as frequency demodulators.

For CDPLLs, it has been observed that the distortion
produced in the demodulated output signal is due to its
asymmetric signal acquisition property. In a CDPLL the
time period of the DCO is controlled linearly with the
discrete error signal provided by the output of the loop
digital filter (LDF), and the controlled DCO frequency is
not a linear function of the control signal. Thus for equal
amounts of frequency offset of the input signal in the
upper side (US) and the lower side (LS) from the DCO
nominal frequency (NF) different amounts of the DCO
control signal are required to control the DCO time period.
This leads to the asymmetric acquisition and tracking
behavior of the CDPLL about the DCO NF. To overcome
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this inherent drawback of a CDPLL, i.e., to get symmetrical
acquisition as well as tracking response, a simple algo-
rithm for dynamical adjustment of the loop gain was
proposed in [6]. According to this algorithm the instanta-
neous loop gain is modified by the phase error of that
instant if the phase error is negative and remains unal-
tered otherwise. Because of its symmetrical acquisition
range, the amplitude distortion of the demodulated output
was found to be less in the case of a SLR-DPLL. Thus a SLR-
DPLL gives better performance as a FM demodulator (FMD)
than a CDPLL.

Although an appreciable number of works regarding
the nonlinear dynamics of DPLLs with frequency modu-
lated (FM) input have been reported in the literature [7–9],
the nonlinear dynamics of SLR-DPLL has not been explored
yet. An idea about the nonlinear behavior of the loop is
important for two purposes. Firstly, for the sake of design-
ing an optimum DPLL system and, secondly, to explore the
possibility of using DPLLs in chaos based communication
systems. To understand the complete behavior of a DPLL
we have to resort to the modern nonlinear dynamical tools
of bifurcation and chaos theories. In this paper, the
nonlinear dynamics of a SLR-DPLL has been studied by
bifurcation theory through numerical simulation. It has
been observed that the system shows period doubling
route to chaos and for certain system parameters it depicts
intermittent behavior. The chaotic behavior has been
examined by finding the Lyapunov exponent and correla-
tion dimension. A comparative study between a CDPLL and
a SLR-DPLL shows that although the dynamical gain
control algorithm [6] reduces the distortion in the demo-
dulated output obtained in a CDPLL, an appreciable
decrease in the stability range of the loop is found when
the input signal frequency is less than or equal to the DCO
NF. But in many practical cases, it is desirable that the loop
should track signals for high gain values too. For this
purpose, the phase error at each sampling instant (SI)
has been modified by the difference of the phase errors of
two consecutive samples of the input signal. Effectively,
the modification using the time delay feedback may be
looked upon as the inclusion of a derivative control
alongwith the proportional LDF. The present study reveals
that the addition of the error controlled signal extends the
range of the dynamical stability of the loop. Moreover, the
modified system shows faster convergence to the steady
state than a CDPLL. These two improved features ensure
the enhancement of the application potentiality of the
modified SLR-DPLL.

The paper is organized in the following way. Section 2
describes the structure and the system equation of a SLR-
DPLL. It presents the analytical bifurcation analysis of the
SLR-DPLL. The stability criterion has been derived in this
section and a prediction of the route through which the
system looses stability is also given. The behavior of the
system obtained from numerical simulation studies and
the corresponding analysis of the bifurcation phenomena
are also included in this section. The chaotic behavior has
been quantified by finding nonlinear dynamical measures
like Lyapunov exponent and correlation dimension.
Section 3 examines the effect of the time delay feedback
technique on a SLR-DPLL using analytical and numerical

tools. Section 4 summarizes the results of the present
study.

2. First-order symmetric lock range digital phase
locked loop

2.1. Structure and system equation formulation

The functional block diagram of a SLR-DPLL with multi-
level gain is shown in Fig. 1. Let us consider a noise free
input signal as

sðtÞ ¼ A0 sin ½ω0tþθiðtÞ�; ð1Þ
where A0 (Volt) and ω0 (rad/s) are the amplitude of the
input signal and DCO nominal frequency, respectively. θiðtÞ
is the input signal phase given by

θiðtÞ ¼Ωtþθ0ðtÞ; ð2Þ
where Ωð ¼ω�ω0Þ is the signal detuning frequency, ω
is the input signal frequency signal. θ0ðtÞ represents the
phase of the input signal. s(t) is sampled by the positive
zero crossing edge of the DCO according to the following
algorithm [5]:

Tðkþ1Þ ¼ T�yðkÞ; ð3Þ
where Tð ¼ 2π=ω0Þ is the nominal period of the DCO.
Tðkþ1Þ[¼t(k)�t(k�1)] is the time elapsed between (k�1)
th and kth sampling instants (SI). yðkÞ is the DCO control
signal at the kth SI t(k).

Considering t(0)¼0 one can get the kth SI as

tðkÞ ¼ kT� ∑
k�1

0
yðiÞ ð4Þ

The sampler output at the kth instant is written as

xðkÞ ¼ A0 sinϕðkÞ ð5Þ
where ϕðkÞ is the loop phase error defined as

ϕðkÞ ¼ 2πkξ�ω0 ∑
k�1

0
yðiÞ ð6Þ

where ξ¼ω=ω0 is the normalized input frequency, yðkÞ ¼
G0xðkÞ is the DCO control signal and G0 is the gain of
the LDF.

We incorporate the dynamical multilevel gain control
algorithm, as prescribed in [6], without considering the

Fig. 1. Block diagram of a SLR-DPLL.
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