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a b s t r a c t

Recently, the iterative adaptive approach (IAA) has been shown to be an effective
nonparametric methodology for high-resolution spectral analysis. Its main idea is to
reformulate the nonlinear frequency estimation problem as a linear model whose para-
meters are updated iteratively according to weighted least squares. Since the derivation
of the IAA is based on ℓ2�norm, it cannot work properly in heavy-tailed noise envir-
onment. In this paper, a generalized version of IAA is derived to provide accurate spectral
estimation in the presence of impulsive noise, which replaces the ℓ2�norm by the
ℓp�norm where 1opo2. Simulation results are included to demonstrate the outlier
resistance performance of the proposed algorithm.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spectral analysis has been an important topic in science
and engineering because many real-world signals are
well described by the sinusoidal model. Basically, the freq-
uency components of the observed data can be obtained
by means of either parametric or nonparametric techni-
ques [1]. In the parametric approach, the signal is assumed
to satisfy a generating model with known functional form,
which allows the derivation of the optimal spectral esti-
mators. However, the performance of these methods
degrades when there is a mismatch between the assumed
and actual signal models. On the other hand, no assump-
tions are made about the data in the nonparametric
approach. A conventional representative is the period-
ogram, which is based on the Fourier transform, but its
resolution is fundamentally limited by the available obser-
vation length. Recently, the iterative adaptive approach
(IAA) [2,3] provides a breakthrough in the nonparametric
methodology because of its very high accuracy and

resolution. This method can be interpreted as reformulat-
ing the nonlinear spectral estimation problem as a linear
model whose coefficients, representing amplitudes at
different frequencies on a fine grid, are updated iteratively
according to weighted least squares (WLS). Since its
development is based on ℓ2�norm optimization, the IAA
is not robust to heavy-tailed noise, which occurs in many
fields such as wireless communications, radar and sonar
[4]. Typical models for impulsive noise include α�stable
noise [5], Gaussian mixture model (GMM) [4], and gen-
eralized Gaussian distribution (GGD) [6].

Existing methods for robust spectral analysis include
[7–11]. With the use of Huber's minimax robust statistics
[12], Katkovnik [7] has developed a maximum-likelihood
(ML) type M-periodogram for spectral analysis in heavy-
tailed noise. Its extension to time–frequency analysis for
nonstationary signals is provided in [8]. Linear combina-
tion of order statistics, which is also called L-estimation,
has been studied in [9] for robust transforms and time–
frequency representations. In [11], it is proved that the
least absolute deviation (LAD) estimator provides the ML
performance in the presence of Laplacian white noise.
Recently, the concept of LAD is generalized to ℓp�norm
minimization where 1≤po2 in [11]. In this paper, by
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utilizing ℓp�norm minimization and IAA, we derive an
outlier-resistant version of IAA, which is referred to as
ℓp�IAA, for impulsive noise environment.

The rest of this paper is organized as follows. The
development of ℓp�IAA is presented in Section 2. We
can see that the ℓp�IAA generalizes [2] as it reduces to the
original IAA by setting p¼2. Computer simulations in
Section 3 show the effectiveness of the proposed scheme
as well as its superiority over the IAA in the presence of
both α�stable and GMM noises. Finally, conclusions are
drawn in Section 4.

2. Proposed method

Without loss of generality, the observed signal
sequence is modeled as

yn ¼ ∑
L

l ¼ 1
γle

jϖln þ qn; n¼ 0;…;N−1 ð1Þ

where γl and ϖl∈ð0;2πÞ are the complex amplitude and
frequency of the lth tone, respectively, L is the number of
sinusoids, and qn is an isotropic independent and identi-
cally distributed (IID) heavy-tailed noise. It is assumed that
the phases of fγlg are independently and uniformly dis-
tributed in ½0;2π� [1] and L is unknown. Our task is to find
fϖlg from fyng.

Although frequency estimation corresponds to a non-
linear model, (1) can be reformulated as the following
linear model [2]:

y¼ Ax ð2Þ
where y¼ ½y0 ⋯ yN−1�T with T denotes transpose, A¼
½aðω0Þ ⋯ aðωK−1Þ� with aðωkÞ ¼ ½a0ðωkÞ ⋯ aN−1ðωkÞ�T ,
anðωkÞ ¼ ejnωk , ωk ¼ 2πk=K , k¼ 0;…;K−1, and x¼
½x0 ⋯ xK−1�T . Note that the noise components fqng are
absorbed in x. Here, the admissible frequency interval
½0;2π� is divided into K uniform grid points fωkg while xk
and aðωkÞ are the amplitude and frequency-vector asso-
ciated with ωk, respectively. Assuming that K is chosen
sufficiently large and in the absence of noise, we have

xk ¼
γl; ωk ¼ϖl; l¼ 1;…; L

0 otherwise:

(
ð3Þ

To achieve outlier resistance, the proposed ℓp-IAA
replaces the ℓ2�norm in [2] by ℓp�norm where
1opo2, and the conceptual estimate of xk, denoted by
x̂k, is

x̂k ¼ arg min
xk

∥y−aðωkÞxk∥pQ−1
k

ð4Þ

where

∥y−aðωkÞxk∥pQ−1
k
¼ ∑

N−1

i ¼ 0
∑
N−1

j ¼ 0
½Q−1

k �i;jðyi−aiðωkÞxkÞn

jyj−ajðωkÞxkjp−2ðyj−ajðωkÞxkÞ
¼ ðy−aðωkÞxkÞHQ−1

k Wkðy−aðωkÞxkÞ: ð5Þ
Here, −1, n and H denote matrix inverse, conjugate, and
conjugate transpose, respectively, Q−1

k is the weighting matrix
with (i, j) entry ½Q−1

k �i;j, and Wk ¼ diagðjy0−a0ðωkÞxkjp−2
⋯ jyN−1−aN−1ðωkÞxkjp−2Þ is a diagonal matrix. The Q k has

the form [13]

Q k ¼ Efðy−aðωkÞxkÞðy−aðωkÞxkÞHWkg ð6Þ
where E denotes the expectation operator.

Based on iteratively reweighted least squares, we solve
(4) in an iterative manner and the estimate at the (l+1)th
iteration is computed as

x̂ðlþ1Þ
k ¼ arg min

xk
fðy−aðωkÞxkÞHðQ ðlÞ

k Þ−1WðlÞ
k ðy−aðωkÞxkÞg

¼ aHðωkÞðQ ðlÞ
k Þ−1WðlÞ

k y

aHðωkÞðQ ðlÞ
k Þ−1WðlÞ

k aðωkÞ
; k¼ 0;…;K−1 ð7Þ

where ðQ ðlÞ
k Þ−1WðlÞ

k is the reweighted matrix which is
characterized by fx̂ðlÞk g. In the Appendix, we have shown
that (7) can be further simplified as

x̂ðlþ1Þ
k ¼ aHðωkÞðRðlÞÞ−1WðlÞ

k y

aHðωkÞðRðlÞÞ−1WðlÞ
k aðωkÞ

; k¼ 0;…;K−1 ð8Þ

where

RðlÞ ¼A diagðjx̂ðlÞ0 jp ⋯ jx̂ðlÞK−1jpÞAH ð9Þ
is the robust covariance matrix constructed from fx̂ðlÞk g and

WðlÞ
k ¼ diagðjy0−a0ðωkÞx̂ðlÞk jp−2 ⋯ jyN−1−aN−1ðωkÞx̂ðlÞk jp−2Þ:

ð10Þ
The steps of the proposed algorithm are summarized in

Table 1. It is worth noting that (8) reduces to the standard
IAA when p¼2. That is to say, the ℓp�IAA is a generalized
version of [2].

The computational complexities of the proposed method
as well as standard IAA and its fast implementation [14,15]
are now examined. At each iteration, the numbers of multi-
plications required are 2KN2 þ KN þ 2N3, 2KN2 þ KN þ N3

and N2 þ 24N log2ð2NÞ þ 3K log2ðKÞ, respectively. The addi-
tional computational cost of N3 in ℓp�IAA over the conven-
tional scheme is due to the multiplication of ðRðlÞÞ−1 andWðlÞ

k .
That is to say, when the number of iterations is kept identical
in all schemes, the fast implementation is the most compu-
tationally efficient. Nevertheless, we can follow [14,15] to
produce a fast implementation for the ℓp�IAA.

3. Simulation results

To evaluate the spectral estimation performance of
ℓp�IAA, computer simulations have been conducted. All
results are based on 100 independent runs and p¼1.2 is
selected. First, we examine the mean square frequency
error (MSFE) performance of the proposed algorithm for a
single tone. We also include the results of the standard IAA
and Cramér–Rao lower bound (CRLB). The stopping criter-
ion in the ℓp-IAA and IAA is chosen according to [2]. In the
first test, the signal is generated according to (1) where

Table 1
Summary of proposed algorithm.

(i) Initialize the values of fx̂ ð0Þ
k g using discrete Fourier transform

(ii) Compute RðlÞ and WðlÞ
k using (9) and (10) for k¼ 0;…;K−1

(iii) Update x̂k using (8) for k¼ 0;…;K−1
(iv) Repeat Steps (ii)–(iii) until a stopping criterion is reached
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