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Recently, the iterative adaptive approach (IAA) has been shown to be an effective
nonparametric methodology for high-resolution spectral analysis. Its main idea is to
reformulate the nonlinear frequency estimation problem as a linear model whose para-
meters are updated iteratively according to weighted least squares. Since the derivation
of the IAA is based on #,—norm, it cannot work properly in heavy-tailed noise envir-
onment. In this paper, a generalized version of IAA is derived to provide accurate spectral
estimation in the presence of impulsive noise, which replaces the #,—norm by the
¢p—norm where 1<p < 2. Simulation results are included to demonstrate the outlier
resistance performance of the proposed algorithm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spectral analysis has been an important topic in science
and engineering because many real-world signals are
well described by the sinusoidal model. Basically, the freq-
uency components of the observed data can be obtained
by means of either parametric or nonparametric techni-
ques [1]. In the parametric approach, the signal is assumed
to satisfy a generating model with known functional form,
which allows the derivation of the optimal spectral esti-
mators. However, the performance of these methods
degrades when there is a mismatch between the assumed
and actual signal models. On the other hand, no assump-
tions are made about the data in the nonparametric
approach. A conventional representative is the period-
ogram, which is based on the Fourier transform, but its
resolution is fundamentally limited by the available obser-
vation length. Recently, the iterative adaptive approach
(IAA) [2,3] provides a breakthrough in the nonparametric
methodology because of its very high accuracy and
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resolution. This method can be interpreted as reformulat-
ing the nonlinear spectral estimation problem as a linear
model whose coefficients, representing amplitudes at
different frequencies on a fine grid, are updated iteratively
according to weighted least squares (WLS). Since its
development is based on #;—norm optimization, the IAA
is not robust to heavy-tailed noise, which occurs in many
fields such as wireless communications, radar and sonar
[4]. Typical models for impulsive noise include a—stable
noise [5], Gaussian mixture model (GMM) [4], and gen-
eralized Gaussian distribution (GGD) [6].

Existing methods for robust spectral analysis include
[7-11]. With the use of Huber's minimax robust statistics
[12], Katkovnik [7] has developed a maximum-likelihood
(ML) type M-periodogram for spectral analysis in heavy-
tailed noise. Its extension to time-frequency analysis for
nonstationary signals is provided in [8]. Linear combina-
tion of order statistics, which is also called L-estimation,
has been studied in [9] for robust transforms and time-
frequency representations. In [11], it is proved that the
least absolute deviation (LAD) estimator provides the ML
performance in the presence of Laplacian white noise.
Recently, the concept of LAD is generalized to £,—norm
minimization where 1<p <2 in [11]. In this paper, by
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utilizing #,—norm minimization and IAA, we derive an
outlier-resistant version of IAA, which is referred to as
¢p—IAA, for impulsive noise environment.

The rest of this paper is organized as follows. The
development of #,—IAA is presented in Section 2. We
can see that the #,—IAA generalizes [2] as it reduces to the
original IAA by setting p=2. Computer simulations in
Section 3 show the effectiveness of the proposed scheme
as well as its superiority over the IAA in the presence of
both a—stable and GMM noises. Finally, conclusions are
drawn in Section 4.

2. Proposed method

Without loss of generality, the observed signal
sequence is modeled as

L .
Yo= 2 7€™"+q,, n=0,...,N-1 (1)
1=1

where y; and @,€(0,27) are the complex amplitude and
frequency of the Ith tone, respectively, L is the number of
sinusoids, and g, is an isotropic independent and identi-
cally distributed (IID) heavy-tailed noise. It is assumed that
the phases of {y;} are independently and uniformly dis-
tributed in [0, 2] [1] and L is unknown. Our task is to find
{w} from {y,}.

Although frequency estimation corresponds to a non-
linear model, (1) can be reformulated as the following
linear model [2]:

y =Ax (2)

where y=[y, - yn_1]" with T denotes transpose, A=
[a(wo) - alwx1)]  with  a(wp) =[ao(@y) - an-1(@)]',
n(wy) =", @ =27k/K, k=0,..,K-1, and x=
[Xo - Xx_1]". Note that the noise components {q,} are
absorbed in x. Here, the admissible frequency interval
[0,27] is divided into K uniform grid points {w;} while x
and a(wy) are the amplitude and frequency-vector asso-
ciated with wy, respectively. Assuming that K is chosen
sufficiently large and in the absence of noise, we have
v, wp=w, =1L

= . 3
X {O otherwise. 3)

To achieve outlier resistance, the proposed £,-IAA
replaces the #,—norm in [2] by #,—norm where
1 <p<2, and the conceptual estimate of x,, denoted by
>"<k, is
X =arg H}(ZHIIY—a(wk)xkllp a 4)
where

) N-IN-T .
ly-a(@xillg = 2 2 [Qp lij(Vi—ai(@wxi)
ko i=0j=0

1y —aj(@)xk [P~ (V;—aj(wi)Xi)
= (y-a(o)x)" Qi Wi(y—a(wp)xy). 5)

Here, !, * and " denote matrix inverse, conjugate, and

conjugate transpose, respectively, Q,;l is the weighting matrix
with (i, j) entry [Q;'ly;, and Wy = diag(lyo—do(wp)xylP~2
o [Yn_1—an-1 (o)X [P72) is a diagonal matrix. The Q, has

the form [13]
Qi = E{(y-a(wi)xi)(y—a(wp)xi) "W} (6)

where E denotes the expectation operator.

Based on iteratively reweighted least squares, we solve
(4) in an iterative manner and the estimate at the (I+1)th
iteration is computed as
A(l+1 . —

& = arg min((y-a(@or)” (@) WY (y-a@ix)

_ @)Wy

= Dy—Tyasd ’
a(@)(Q))) ™ W a(wy)

k=0,... . K-1 7

where (Q)"'W{ is the reweighted matrix which is
characterized by {x"}. In the Appendix, we have shown

that (7) can be further simplified as

w0 ®RO) Wy

= k=0,...K-1 ®)
K — 5 PR
C AR W a(wy)

where

1 . X s H
R = A diag(XpP -+ 1% P)A )
is the robust covariance matrix constructed from {fc;{”} and

1 . () p— 5 p—
W = diag(lyp—ao(@ )R P2 - [yn_g—an-1(@)R} P-2).

(10)

The steps of the proposed algorithm are summarized in
Table 1. It is worth noting that (8) reduces to the standard
IAA when p=2. That is to say, the #,—IAA is a generalized
version of [2].

The computational complexities of the proposed method
as well as standard IAA and its fast implementation [14,15]
are now examined. At each iteration, the numbers of multi-
plications required are 2KN? + KN + 2N3, 2KN? + KN + N>
and N? + 24N log,(2N) + 3K log,(K), respectively. The addi-
tional computational cost of N* in #,—IAA over the conven-
tional scheme is due to the multiplication of (R”)~! and W{".
That is to say, when the number of iterations is kept identical
in all schemes, the fast implementation is the most compu-
tationally efficient. Nevertheless, we can follow [14,15] to
produce a fast implementation for the #,—IAA.

3. Simulation results

To evaluate the spectral estimation performance of
¢p—IAA, computer simulations have been conducted. All
results are based on 100 independent runs and p=1.2 is
selected. First, we examine the mean square frequency
error (MSFE) performance of the proposed algorithm for a
single tone. We also include the results of the standard IAA
and Cramér-Rao lower bound (CRLB). The stopping criter-
ion in the #,-1AA and IAA is chosen according to [2]. In the
first test, the signal is generated according to (1) where

Table 1
Summary of proposed algorithm.

5(0)

i) Initialize the values of {X,'} using discrete Fourier transform

(
(i) compute R® and W;f) using (9) and (10) for k=0, ....K-1
(iii) Update X using (8) for k=0, ...,K-1

(iv) Repeat Steps (ii)-(iii) until a stopping criterion is reached
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