FISEVIER

Contents lists available at ScienceDirect

Autoimmunity Reviews

journal homepage: www.elsevier.com/locate/autrev

Review

In vivo distribution of single chain variable fragment (scFv) against atherothrombotic oxidized LDL/ β_2 -glycoprotein I complexes into atherosclerotic plaques of WHHL rabbits: Implication for clinical PET imaging

Takanori Sasaki ^a, Kazuko Kobayashi ^a, Shoichi Kita ^b, Kazuo Kojima ^b, Hiroyuki Hirano ^c, Lianhua Shen ^a, Fumiaki Takenaka ^a, Hiromi Kumon ^{a,d}, Eiji Matsuura ^{a,e,*}

- ^a Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- ^b IVD Development Department, Medical and Biological Laboratories Co, Ltd., Ina, Japan
- ^c SHI Accelerator Service Ltd., Tokyo, Japan
- ^d Department of Urology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- e Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan

ARTICLE INFO

Article history: Received 1 October 2016 Accepted 5 October 2016 Available online 15 December 2016

Keywords: Autoantibody PET/CT imaging Oxidized LDL (oxLDL)/ β_2 -glycoprotein I (β_2 GPI) complexes Watanabe heritable hyperlipidemic (WHHL) rabbit

ABSTRACT

Background: Oxidized LDL (oxLDL) can exist as a complex with β_2 -glycoprotein I (β_2 GPI) in plasma/serum of patients with non-autoimmune atherosclerotic disease or antiphospholipid syndrome (APS). Nonetheless, direct *in vivo* evidence supporting the pathophysiological involvement of oxLDL/ β_2 GPI complexes and specific autoantibody against the complexes in developing atherothrombosis has yet been established. In the present study, we demonstrated *in vivo* distribution of single chain variable fragment of IgG anti-oxLDL/ β_2 GPI complexes (3H3-scFv) in Watanabe heritable hyperlipidemic (WHHL) rabbits by PET/CT imaging.

Methods: An antibody-based PET probe, ⁶⁴Cu-3H3-scFv, was established, and WHHL rabbits were applied for a non-autoimmune atherosclerotic model to demonstrate *in vivo* distribution of the probe.

Results: 3H3-scFv has exhibits specificity towards β_2 GPl complexed with oxLDL but neither a free form of β_2 GPl nor oxLDL alone. Post-intravenous administration of ⁶⁴Cu-3H3-scFv into WHHL rabbits has demonstrated a non-invasive approach for *in vivo* visualization of atherosclerotic lesion. The imaging probe achieved ideal blood clearance and distribution for optimal imaging capacity in 24 h, significantly shorter than that of an intact IgG-based imaging probe. ⁶⁴Cu-3H3-scFv targeted on atherosclerotic plaques in aortas of WHHL rabbits where extensive accumulation of lipid deposits was observed by lipid staining and autoradiography. The accumulation of ⁶⁴Cu-3H3-scFv in aortic segments of WHHL rabbits was 2.8-folds higher than that of controls (p=0.0045).

Conclusions: The present in vivo evidence supports the pathophysiological involvement of oxLDL/ β_2 GPI complexes in atherosclerotic complications of WHHL rabbits. ⁶⁴Cu-3H3-scFv represents a novel PET imaging probe for non-invasive pathophysiological assessment of oxLDL/ β_2 GPI complexes accumulated in atherosclerotic plaques.

© 2016 Elsevier B.V. All rights reserved.

Contents

		uction
2.	Mater	ials and methods
	2.1.	Establishment of a hybridoma secreting IgG anti-oxLDL/ β_2 GPI complexes
	2.2.	Cloning of the IgG-cDNA
	2.3.	Design of single-chain variable fragment (scFv)
	2.4.	ELISA and biolayer light interferometry

E-mail address: eijimatu@md.okayama-u.ac.jp (E. Matsuura).

^{*} Corresponding author at: Collaborative Research Center for OMIC and Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.

2.5.	Plasma oxLDL/ eta_2 GPI complexes and autoantibodies against the complexes	
2.6.	Immunohistochemical analysis	161
2.7.	Radiolabeling of scFv with ⁶⁴ Cu	161
2.8.	In vivo study	161
2.9.	Statistical analysis	161
3. Resu	llts	162
3.1.	Reactivity of IgGs to oxLDL/ β_2 GPI complexes and β_2 GPI	162
3.2.	Specificity of 3H3-scFv	162
3.3.	Plasma oxLDL/ β_2 GPI complexes and IgG and IgM anti-oxLDL/ β_2 GPI complexes	
3.4.	Clearance and biodistribution of 3H3-scFv	
3.5.	PET/CT imaging by intravenous injection with ⁶⁴ Cu-3H3-scFv	162
3.6.	⁶⁴ Cu-3H3-scFv targeting to atherosclerotic lesions with lipid plaque deposition	
4. Disci	ussion	163
Take-home messages		
Acknowledgments		
References		

1. Introduction

Antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of heterogeneous antiphospholipid antibodies that closely associate with clinical manifestations such as arterial and venous thromboembolic events [1–3]. β_2 -glycoprotein I (β_2 GPI) is among the most relevant antigenic targets of pro-thrombotic antiphospholipid antibodies characteristically found in patients with the APS [4–8]. β_2 GPI can bind to oxLDL to form a highly immunogenic oxLDL/ β_2 GPI complexes [9–11]. Both oxLDL/ β_2 GPI complexes and their immune complexes formed with APS-derived autoantibodies have been implicated in the development of so-called "autoimmunemediated" atherothrombosis. We have previously developed an IgG monoclonal antibody (mAb) specific to oxLDL/β₂GPI complexes, namely, "WB-CAL-1", derived from non-immunized APS mice model, NZW × BXSB F1 male mice (W/B F1 mice) [12]. In addition, oxLDL/ β₂GPI complexes have also been demonstrated in non-autoimmune human atherosclerotic plaques by immunohistochemical staining [13]. As such we hypothesized that intravenous injection of WB-CAL-1antibody or antibody similar specificity will bind to oxLDL/B2GPI complexes and accumulates atherosclerosis plagues. Coupled with in vivo imaging techniques, such application can be used as a comprehensive and non-invasive diagnosis platform to evaluate the severity of atherosclerotic lesion by assessing the distribution and amount of oxLDL/

Diagnostic imaging of atherosclerotic lesions represents an important tool [14] and computed tomography (CT) is commonly used to determine the presence of ectopic calcified plaques [15,16] and invasive angiographic procedures are required to evaluate the degree of arterial stenosis [17]. Herein, special effort has been aimed to develop in vivo systems capable of detecting vulnerable plaques associated with adverse cardiovascular events [18,19]. To date, various pro-atherogenic molecules are being tested as potential target for molecular imaging technologies in identification of vulnerable plaques [20,21]. Several groups have looked into adhesion molecules, oxLDL and angiogenic/ atherogenic factors as potential molecular imaging biomarkers to detect atherosclerotic lesions [22-26]. Early event of atherosclerosis has been associated with the accumulation of LDL in the sub-endothelial matrix [27], and oxidative modification of these accumulated LDL subsequently triggered systemic and localized inflammations. Therefore, it is now commonly accepted that oxLDL plays a central role in the progression of atherosclerosis [28].

During the past decade, more sophisticated and non-invasive techniques to detect non-stenotic vascular lesions and plaques susceptible to rupture are necessary to implement early treatment to prevent further disease progression. However, there is still controversy regarding the use of even non-invasive imaging in high risk subjects who do not exhibit any cardiovascular symptom such as chest pain

or electrocardiogram abnormalities [29]. PET with different kinds of positron emitters were applied for imaging atherosclerotic plaques [30,31]. Especially radiolabeling antibody against to several molecules in atherosclerosis had been developed. In the present study, we generated a mouse mAb, namely 3H3, that recognizes which human oxLDL/ β_2 GPl complexes and not β_2 GPl alone. We further prepared the 25 kDa scFv by constructing the fragment with the identical sequences of complementarity determining regions (CDR) and framework regions of 3H3 IgG. The 3H3-scFv was labeled with ⁶⁴Cu via 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) for PET imaging and the generated probe was then introduced intravenously into the atherosclerosis animal model, Watanabe heritable hyperlipidemic (WHHL) rabbits to evaluate its *in vivo* accumulation in atherosclerotic lesions.

2. Materials and methods

2.1. Establishment of a hybridoma secreting IgG anti-oxLDL/ β_2 GPI complexes

BALB/c female mice (6 week-old) were immunized with human oxLDL/ β_2 GPI complexes [32] (50 µg/head) and emulsified with Freund's complete adjuvant repeatedly. Three days after the final injection, lymph-node cells were collected and fused with myeloma cells (P3-X63Ag8U1). Screenings for hybridomas that secretes antigen-specific antibody were carried out by ELISA using human oxLDL/ β_2 GPI complexes- or β_2 GPI-coated 96-well microtiter plates (see Section 2.4 for details). A full length of lgG mAb was established.

2.2. Cloning of the IgG-cDNA

mRNAs were obtained from the hybridoma cells by using illustra™ QuickPrep Micro mRNA Purification Kit (GE Healthcare, Little Chalfont, UK). The mRNAs were then converted into cDNA using the First-Strand cDNA Synthesis kit (GE Healthcare) and further amplified by PCR.

2.3. Design of single-chain variable fragment (scFv)

The 3H3-scFv was designed by inserting the glycine (G)-serine (S)-rich 15-amino-acid linker (GGGGSGGGGGGS) in between variable light-chain (VL) and variable heavy-chain (VH) regions. The 3H3-scFv with six-histidine tag (IDT, San Jose, CA)-gene was then ligated into an expression vector, pcDNA3.1 (Life technologies, Foster City, CA). The Chinese hamster ovary (CHO-K1) cells were transfected with linearized pcDNA3.1 vector by electroporation and a stable cell line was established. The cell line was cultured in the serum free-medium, CD-CHO (Life technologies). 3H3-scFv was purified from culture supernatant

Download English Version:

https://daneshyari.com/en/article/5665302

Download Persian Version:

https://daneshyari.com/article/5665302

<u>Daneshyari.com</u>