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a b s t r a c t

A new algorithm involving sparse recovery is proposed to address the problem of

direction-of-arrival (DOA) estimation using weighted subspace fitting (WSF). The

proposed algorithm proves to be a modified version of ‘1-SVD by using an optimal

weighting matrix, wherein a scheme of regularization between sparsity penalty and

subspace fitting error is also given for all SNR range. Numerical simulations verify the

efficiency of the proposed algorithm and illustrate the performance improvement in

low SNR.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Direction of arrival (DOA) estimation has been an
important topic during the last decades [1] due to its
wide application in radar, sonar, radio astronomy, etc. The
traditional way to solve this problem includes the max-
imum likelihood (ML) estimators [2] and subspace-based
approaches [3]. Recently, the techniques of sparse recov-
ery have provided a new perspective of DOA estimation
by exploiting the spatial sparsity in the array signal model
[4–6,8–9], and the super-resolution property and ability of
resolving coherent sources have attracted a lot of attention.
An early work of applying sparse recovery into DOA
estimation is the global matched filter (GMF) [4] which
exploited the beamformer samples for DOA estimation

based on uniform circular array. The most successful one
is ‘1-SVD [5] which employs ‘1-norm to enforce sparsity
and singular value decomposition to reduce complexity and
sensitivity to noise. The optimization problem in ‘1-SVD can
be deemed as a subspace fitting [7] procedure, whereas the
optimality of the weighting matrix is not preserved. Another
problem is that the scheme of regularization between
sparsity penalty and subspace fitting error is suboptimal
in low signal-to-noise ratio (SNR). Some recently proposed
methods including sparse iterative covariance-based esti-
mation (SPICE) [8] and sparse representation of array
covariance vectors (SRACV) [9] also employed ‘1-norm
penalty, while they addressed the problem in the correlation
domain instead of the data domain. Actually the rigorous
constraint to enforce sparsity should be ‘1-norm instead of
‘1-norm, whereas the optimization problem involving
‘0-norm is NP-hard. An alternative strategy named joint
‘2,0 approximation (JLZA) was given in Ref. [10], where a
class of Gaussian functions was used to approximate the ‘0-
norm constraint; however, it is difficult to choose the
appropriate parameters for all scenarios in real applications.

In this communication, sparse recovery is introduced
to solve the problem of weighted subspace fitting (WSF)
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[11] whose solution was shown to asymptotically attain
the stochastic Cramér–Rao lower bound (CRLB) [12]. In
the proposed algorithm, which is termed as sparse recov-
ery for weighted subspace fitting (SRWSF), a regulariza-
tion scheme based on the optimal weighting matrix
is given for all SNR range. Simulation results show
that SRWSF efficiently improves the performance in low
SNR compared with ‘1-SVD, besides no degradation in
high SNR.

Notation: Upper (lower) bold face letters are used to
denote matrices (column vectors). { � }T, { � }H, : � :F, : � :p,
dik, diag{U}, E{ � } and Im denote transpose, conjugate
transpose, Frobenius norm, ‘p-norm, Kronecker symbol,
diagonalization, expectation, and m�m identity matrix,
respectively. j is reserved for the imaginary unit

ffiffiffiffiffiffiffi
�1
p

.

2. Array model

Assume that K narrowband far-field signals from dis-
tinct directions y1,y2,y,yK impinge on a sensor array
constituted by M omnidirectional elements. For simpli-
city, only uniform linear array (ULA) is considered, and it
should be kept in mind that the proposed algorithm is
suitable for arbitrary array geometry. The array output
data vector for the tth snapshot can be written as

xðtÞ ¼AsðtÞþnðtÞ, t¼ 1,2,. . .,L, ð1Þ

where A is the array manifold matrix, s(t) is the incident
signal vector which is modeled as white Gaussian process,
n(t) is the vector of sensor noise which is spatially and
temporally white Gaussian with equal variance and is
uncorrelated with s(t), and L is the total number of
snapshots. The array manifold matrix A consists of K

steering vectors

A¼ ½aðy1Þ,aðy2Þ,. . .,aðyK Þ�, ð2Þ

where a(y) is given by

aðyÞ ¼ ½1,nðyÞ,. . .,nM�1ðyÞ�T , ð3Þ

and directional factor is defined as nðyÞ ¼ expð�ðj2pdsinyÞ
=lÞ, where d is the interelement spacing which is set to be
half a wavelength l to avoid aliasing. In this communica-
tion, 01 denotes the broadside direction while 7901
denote the end-fire directions.

The covariance matrix of x(t) can be represented as

Rx ¼ EfxðtÞxHðtÞg ¼ ARsA
H
þs2

nIM , ð4Þ

where Rs is the covariance matrix of incident signals, and
s2

n is the variance of noise. The rank of Rs is denoted as K0,
and rests with the correlation between incident signals. In
the scenario of multipath propagation when coherent
signals are present, K0 is less than K, otherwise K0 is equal
to K. The eigen decomposition of Rx is given by

Rx ¼
XM
i ¼ 1

mieie
H
i ¼ EsKEH

s þEnCEH
n , ð5Þ

where the eigen values m1Zm2Z . . .ZmK 04mK 0 þ1 ¼ . . .¼
mM , K¼ diagfm1,m2,. . .mK 0 g, C¼ diagfmK 0 þ1,mK 0 þ2,. . .,mMg,
and Es and En are the corresponding eigen vector matrices
which are defined as signal subspace matrix and noise
subspace matrix, respectively. The matrix Es stays in the

same subspace of A, i.e., it can be expressed as

Es ¼AB, ð6Þ

where B is a K�K0 matrix having full column rank. The
traditional subspace-based methods utilize the orthogon-
ality between signal subspace and noise subspace to
derive the DOA estimates.

In reality, Rx can only be estimated by using finite
length of snapshots, and is given by

R̂x ¼
1

L

XL

t ¼ 1

xðtÞxHðtÞ: ð7Þ

Similarly, the eigen decomposition of R̂x can be written
as

R̂x ¼
XM
i ¼ 1

m̂iêiê
H
i ¼ ÊsK̂Ê

H

s þ ÊnĈÊ
H

n : ð8Þ

Here L is assumed to be larger than K0, otherwise the
rank of R̂x is rather L than K0.

3. Sparse recovery for WSF

3.1. Subspace fitting with optimal weighting matrix

In Ref. [7], it was revealed that most of the prevalent
DOA estimation methods can be classified into variations
of the same subspace fitting problem, which can be
expressed as

ĥSF ¼ argmin
h

:ÊsŴ
1=2
�AðhÞP:2

F , ð9Þ

where Ŵ is the weighting matrix which varies with

different methods, A(h) is the array manifold matrix para-
meterized by h, and P is a K�K0 matrix of full column rank.

Note that Ŵ¼ K̂ corresponds to the subspace fitting style
applied in ‘1-SVD, while it is not the optimal choice for
the problem formulated in Eq. (9). It was proved in Ref. [7,
theorem 3] that the optimal weighting matrix which gives

the lowest asymptotical variance is Ŵopt ¼ ðK̂�ŝ2
nIK 0 Þ

2K̂
�1

,

where the noise variance estimate ŝ2
n can be obtained by

averaging the M�K0 smallest eigen values. As the prove-

ment of optimality of Ŵopt was already given in Ref. [7] and

also due to page limitation, detailed discussion of this issue
is omitted here. Note that the subspace fitting problem

employing Ŵopt is also referred to as WSF problem in

Ref. [11].
Substituting the least square solution of P back into

(9), the WSF optimization problem becomes

ĥWSF ¼ argmin
h

trfP?AðhÞÊsŴoptÊ
H

s g ¼ argmin
h

Q ðhÞ, ð10Þ

where P?AðhÞ is the orthogonal projection matrix of A(h). It
was also proved in Ref. [11] that ĥWSF is asymptotically a
local ML DOA estimate based on observations of CH

ðhÞÊs,
where P?AðhÞ ¼ CðhÞCH

ðhÞ and CH(h)C(y)¼IM�K. The modi-
fied variable projection (MVP) method addresses the
problem illustrated by Eq. (9), and gives an ultimate
convergence to the true DOAs by employing a fine
initialization.
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