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Logistic models, comprising a linear filter followed by a nonlinear memoryless
sigmoidal function, are often found in practice in many fields, e.g., biology, probability
modelling, risk prediction, forecasting, signal processing, electronics and communica-
tions, etc., and in many situations a real time response is needed. The online algorithms
used to update the filter coefficients usually rely on gradient descent (e.g., nonlinear
counterparts of the Least Mean Squares algorithm). Other algorithms, such as Recursive
Least Squares, although promising improved characteristics, cannot be directly used due
to the nonlinearity in the model. We propose here a modified Recursive Least Squares
algorithm that provides better performance than competing state of the art methods in
an adaptive sigmoidal plant identification scenario.
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1. Introduction

Structures comprising a linear filter followed by a
nonlinear memoryless sigmoidal function are useful
models in many application fields (biology, probability
modelling, risk prediction, forecasting, signal processing,
electronics and communications). In some cases, the input
data does not follow a stationary distribution and
adaptive algorithms are needed to adjust the model
weights. The most common family of such algorithms
are those based on gradient descent that follow directions
in the weight space opposite to the gradient of the error
surface to find a suitable solution for the weights
(e.g., nonlinear counterparts of the Least Mean Squares
(LMS) algorithm). However, such methods are slow to
converge and very sensitive to highly correlated inputs.
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Other families of algorithms, such as those based on
minimizing a Least Squares cost function (e.g., Recursive
Least Squares, RLS), although showing improved char-
acteristics, cannot directly be used due to the nonlinearity
in the model. Some solutions have been proposed using
piecewise approximations of the sigmoid using Taylor’s
expansions, and hence they are suboptimal [1,3-5,7,8]. An
improved approach, named as Non-Linear RLS (NL-RLS),
has been proposed in [6] and since it does not rely on any
approximation it outperforms the aforementioned meth-
ods. We propose here a modified Recursive Least Squares
algorithm that provides better performance than compet-
ing state of the art methods in an adaptive sigmoidal
plant identification scenario, as will be shown in the
experimental section.

2. The proposed Reduced-Sensitivity RLS algorithm

The task of plant identification with sigmoidal function at
the output of the filter has been depicted in Fig. 1(a). The top
branch represents the plant output generation given an input
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Fig. 1. Nonlinear plant identification scenario. The plant identification
schemes using RLS and NL-RLS algorithms are shown (grey boxes).
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Fig. 2. The proposed RS-RLS algorithm for nonlinear plant identification.

signal x[n] and a nonstationary impulse response h[n]. The
signal at the output of the filter is y[n]=h'[n]x[n], where
x[n]=[x(n—N+1),... x(n)]" (N is the number of weights in the
filter), the output of the sigmoidal function is o[n]=
fiy[n])=(e""— e=Y1nyj(M+ =Y ‘and o[n] is corrupted by
additive white Gaussian noise v[n] to finally produce d[n],
the desired plant output to be estimated. The grey box
in Fig. 1 marked as “RLS” represents the standard plant
identification approach using a linear filter adjusted using the
RLS algorithm.

Such direct approach is bound to be suboptimal since it
is designed for linear plant identification. The second grey
box in Fig. 1 marked as “NL-RLS” represents the nonlinear
solution proposed in [6], which claims to solve the problem
without any linear approximation of the sigmoidal function.
The filtering scheme proposed in this paper has been
depicted in Fig. 2 (grey box marked as “RS-RLS”) and, in
what follows, we derive the weight update mechanism.

The error signal at the output of the nonlinearity in the
RS-RLS case at time “n” is e[n] = d[n]—os[n]=d[n]—fAwi[n]
x[n]), which is nonlinear with respect to the weights. We

propose to minimize the squared error before the nonlinear-
ity, such that a closed form solution for the weights is
available. Therefore, the desired output before the nonlinear-
ity in the RS-RLS case at time “n” is d{n]=f~"(d[n])=1/2 In
« +a[n])/(1 —&[n])), where &[n] is d[n] scaled to the range
(—1+4¢,1—¢). The output of the filter also at time “n” is
ys[n]=wi[n]x[n] and the error before the nonlinearity is
en]=d{n]—ys[n]. However, we are actually interested in
minimizing the error after the nonlinearity, and e{n] is
transformed by the sigmoid depending on the value of the
filter output ys[n] (assuming that errors are much smaller
than the filter output itself, which is the common situation).
When ys[n] is close to zero, we are operating on the linear
part of the sigmoid and error e{n] appears unaltered after the
nonlinearity. However, when |y3[n]| is large, the sigmoid
attenuates the error efn]. In general, the attenuation factor is
proportional to the derivative of the sigmoid. Therefore a
more realistic error measurement at the output of the
sigmoid is

e[n] = (d¢[n]—ys[nDf '(ys[n]) 1)

where f'(ys[n]) is the derivative of the sigmoid function
evaluated at ys[n], which can be efficiently computed as
f'(ya[n])) = 1—(f(ys[n]))®>. We will incorporate this error
definition in the formulation of the RS-RLS algorithm, as
follows. The functional to be minimized at time n can be
written in a Weighted Recursive Least Squares form:

n
Cws[n)) = > A" a(i)(ds[il-wj[nIX[i])* @)
i=1
where a(i) = (f'(y3[n])?. The cost function in (2) is nonlinear
(non-quadratic) with respect to the weights, since a(i)
depends on ys[n] and ys[n] is computed using the weights
ws[n], so it cannot be directly solved in explicit form.
However, we may adopt an iterated weighted scheme
consisting in assuming that a(i) values do not depend on
the weights, minimizing (2) to find new weights, updating
the a(i) values with the new weights, and iteratively
repeating until convergence. This type of approaches are
known in the literature as Iterated Weighted Least Squares
(IWLS), and they are stable and converge reasonably fast
[2,9].

Therefore, to solve (2) under the IWLS approach we
compute the derivative of C(ws[n]) with respect to ws[n],
taking a(i) as constants, and we set it equal to zero, to
obtain:

n :
> A a@X(i( i —X"[i]ws[n]) = 0 3)
i=1
Eq. (3) leads to the well known linear system
R, [n]ws[n]=ry[n] where

Ry[n] = Zn: Al a@xix ] “)

i=1

n
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To recursively solve this system, we start from the
direct recursion to estimate Ry[n] and ryy[n], formulated
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