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Abstract 

This paper provides a new insight into the high resolution property of the negative derivative of the phase response of a system. Group 
delay functions have been proposed and applied successfully as an alternative to conventional magnitude spectrum based applications in 
speech and music processing. One of the reasons claimed for its superior performance is the high spectral resolution. Most of the existing 
work use empirical analysis to show this property. In this paper, we show mathematically that for a single resonator, the ratio of the value of 
the peak in the magnitude spectrum to the value at a frequency that is n dB below the peak, is always much lower than the ratio of that of 
the minimum phase group delay spectrum. The results are extended for multiple resonators using numerical analyses. The theoretical results 
are reinforced using three applications, namely, pitch estimation, formant estimation and onset detection. The average deviation from the 
location of the pitch value/formant value/musical onset is about 53% lower than that of similar techniques that use the magnitude spectrum 

of the signal. 
© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the frequency representation of speech signals, informa- 
tion is encoded in both magnitude and phase. The importance 
of the phase spectrum in speech technology has been estab- 
lished only in the last few decades. Intelligibility tests using 

phase only reconstruction in Alsteris and Paliwal (2007) in- 
dicate that temporal aspects of speech are encoded better 
in the phase compared to that of the magnitude. Shi et al. 
(2006) showed under various signal-to-noise ratios that hav- 
ing random phases for each frequency significantly altered 

the recognition rate as compared to actual (and reconstructed) 
phase. In Hegde et al. (2004) , Rajesh M Hegde (2005) and 

Bozkurt and Couvreur (2005) , the phase spectrum has been 
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processed (via the group delay spectrum) for applications in 

speaker and speech recognition. 
The negative frequency derivative of phase, commonly 

known as group delay function, has been proposed as an al- 
ternative to magnitude spectrum for segmentation (hybrid seg- 
mentation) and feature extraction tasks (ASR, TTS) in speech 

and music processing ( Shanmugam and Murthy (2014b) , 
Rajan and Murthy (2013a) , Lakshmi and Murthy (2008) , 
Rasipuram et al. (2008) ). In all applications, the high spectral 
resolution of group delay functions is argued to contribute 
directly or indirectly to the superior performance. In syllable 
segmentation, spectral resolution enables accurate peak/valley 

detection while in pitch and formant estimation, reso- 
nances and anti-resonances are better emphasized by spectral 
resolution. 

The high resolution property, although stated and acknowl- 
edged in most of the earlier applications involving group 

delay and derived functions, has not been well explained 

or proven. In earlier efforts towards justification, the group 
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delay function was studied in the vicinity of resonances. 
In ( Yegnanarayana, 1979 ), where formant estimation was at- 
tempted from the linear prediction phase spectra, a cascade 
of resonators was considered. For a constrained location of 
the poles, it was shown that the squared magnitude behavior 
of the group delay function around the resonance leads to its 
high resolution property. The magnitude spectrum for a cas- 
cade of N poles ( αi ± β i where 1 ≤ i ≤ N ) is given by: 
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The corresponding group delay spectrum is: 
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For β2 
i � α2 

i , the group delay can be approximated as 
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or 

θ ′ (ω) � 
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where K i is a constant. Hence, most of the energy in the 
group delay domain is argued to be concentrated around the 
resonator, thus enabling better formant estimation. Clearly, the 
proof places a significant constraint on the pole, that it must 
be close to the imaginary axis and have a small bandwidth. 
However, this assumption is not very realistic since the most 
important formants (e.g. for formant tracking) are often close 
to the real axis and with small imaginary component. 

Later ( Bellur and Murthy, 2013 ) considered a parallel con- 
nection of resonators while working on pitch histograms that 
resembled a non-constant Q factor for each of the peaks. 
By considering an example of two resonators in parallel, it 
was shown that the group delay response was approximated 

by the squared magnitude spectrum around the peaks. Both 

( Yegnanarayana, 1979 ) and ( Bellur and Murthy, 2013 ) con- 
sider only the region around the peaks, and present compar- 
ativeness rather than analysis proof for peakedness. 

In this paper, a proof is presented for the high resolution 

property. Section 2 considers the case of a single resonator 
system, and proves, without any constraints on the location 

of poles, that the group delay function always possesses a 
sharper peak in comparison to the magnitude spectrum. The 
strength of the group delay function at the n dB bandwidth 

of the magnitude spectrum is always shown to be lesser. Sec- 
tion 3 quantifies the resolution for multi-resonator systems 
using numerical computations and empirical measures such 

as kurtosis and spectral flatness. In Section 4 , three appli- 
cations are discussed that benefit from the high resolution 

property, and Section 5 draws comparisons between group 

delay (phase) based and magnitude based approaches through 

experimentation. Conclusions are presented in Section 6 . 

2. A single-resonator minimum-phase system - T heoretical 
approach 

Consider a causal, discrete-time signal x [ n ] with one pole 
whose location in the z-plane is given as z 0 = re jω 0 , or z 0 = 

e −σ0 + jω 0 . σ 0 represents the bandwidth of the pole and ω 0 the 
angle with respect to the abscissa. The Z-transform of the 
above system is: 

X (z) = 

1 

(z − z 0 )(z − z ∗0 ) 
(4) 

When evaluated at the unit circle: 

X (ω) = 

1 

(e jω − e −σ0 + jω 0 )(e jω − e −σ0 − jω 0 ) 
(5) 

The expression for the magnitude spectrum is given as: 

| X (ω) | = P × Q (6) 

where 
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Considering (7) alone, the maximum value, 1 
1 −e −σ0 

, occurs at 
ω = ω 0 . To compute the n dB bandwidth, we determine the 
angular frequency ( ω 1 ) at which the magnitude spectrum falls 
to 

1 
N of its maximum value, i.e 
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Here, N = 10 

n 
20 . Solving for ω 1 , 
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The n dB bandwidth is the interval with ω 0 at the center, and 

is given by 
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We repeat this analysis for the group delay spectrum. The 
phase spectrum for the system defined by (5) is given by 
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The group delay is defined as the negative derivative of the 
phase spectrum and is given by 

GD(ω) = 

1 − e −σ0 cos (ω − ω 0 ) 

1 + e −2σ0 − 2e −σ0 cos (ω − ω 0 ) 

+ 

1 − e −σ0 cos (ω + ω 0 ) 
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(13) 

Differentiating the first term in (13) and equating to zero, 
we find that it displays the same abscissa and ordinate for 



Download English Version:

https://daneshyari.com/en/article/566665

Download Persian Version:

https://daneshyari.com/article/566665

Daneshyari.com

https://daneshyari.com/en/article/566665
https://daneshyari.com/article/566665
https://daneshyari.com

