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Abstract 

In this paper, we address the task of audio source separation for a stereo reverberant mixture of audio signals. We use a full-rank model for 
the spatial covariance matrix. Bayesian Non-negative Matrix Factorization(NMF)frameworks are introduced for factorizing the time-frequency 
variance matrix of each source into basis components and time activations. We also propose to incorporate the temporal dependencies in 
the Bayesian model through (1) recursively updating the prior hyperparameters or (2) applying a prior with Markov chain structure to favor 
the smoothness of the solution and we compare the performance of these two schemes. The EM algorithm is applied to derive the update 
relations of the unknown parameters. The separation performance improvement over the non-Bayesian standard NMF method as well as the 
conventional full-rank unconstrained method are investigated by calculating objective separation evaluation metrics. 
© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

We often deal with a mixture of sounds coming from dif- 
ferent acoustic sources. Separation of these audio signals and 

extracting the individual source signals is required in many 

applications including speaker diarization, meeting transcrip- 
tion systems, hearing aids, polyphonic music transcription, 
etc. 

When no prior information of the sources or channel mix- 
ing system is available, the task is called Blind Source Sepa- 
ration (BSS). The multichannel mixture signal x(t ) ∈ R 

M can 

be expressed as 

x(t ) = 

N ∑ 

n=1 

y n (t ) (1) 

where y n (t ) , n = 1 . . . N is the n th source spatial image vec- 
tor over M channels. The mixing process consists of a linear 
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time-invariant filtering of the source signals as: 

y n (t ) = 

L−1 ∑ 

l=0 

h n (l ) s n (t − l ) (2) 

where s n ( t ) is the n th source signal, h n (l ) ∈ R 

M is the mixing 

filter vector which denotes the acoustic path from source n 

to the M microphones and L is the filter length. Most of the 
proposed BSS methods are based on the assumption that the 
mixing process at each frequency bin can be approximated 

by complex-valued multiplication: 

Y n ( f , t ) ≈ H n ( f ) S n ( f , t ) (3) 

where Y n ( f, t ) is the spatial image of source n in the Short 
Time Fourier Transform Domain(STFT) domain, s n ( f, t ) de- 
notes the source STFT and H n ( f ) specifies the Fourier trans- 
form of the mixing filter h n ( t ). 

If S n ( f, t ) is a zero-mean variable with variance v n ( f, t ), the 
covariance of Y n ( f, t ) can be written as: 

R Y n ( f , t ) = v n ( f , t ) R n ( f ) (4) 
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The assumption in (3) implies that the spatial covariance 
matrix of each source, R n ( f ), has rank 1. Assuming the rank- 
1 model, BSS can be achieved using time-frequency (TF) 
masking techniques ( Yilmaz and Rickard, 2004 ) or MAP es- 
timation assuming sparse prior distributions ( Winter et al., 
2007 ), or modeling the source variances with Non-negative 
Matrix Factorization (NMF) ( Févotte et al., 2009; Ozerov and 

Févotte, 2010 ). The rank 1 assumption is only valid when the 
filter length L is sufficiently small with respect to the STFT 

window length. This is violated in most realistic scenarios 
where reverberation exists. A full-rank spatial covariance ma- 
trix model is proposed in Duong et al. (2009) to provide 
better approximation in reverberant environments. The Max- 
imum Likelihood (ML) solution is then found in an oracle 
context where both the spatial covariance matrix, R n ( f ), and 

the scalar variance of the sources, v n ( f, t ), are known and 

also in a semi-blind context where the spatial covariance ma- 
trix is estimated from single-source training data. In Duong 

et al. (2010a) , the EM algorithm was used for blindly esti- 
mating both of the above parameters. The source permutation 

problem which arises when the unknown parameters are in- 
dependently estimated at each frequency bin, has also been 

solved in Duong et al. (2010a) . 
In Arberet et al. (2010) , the source variances v n ( f, t ) are 

modeled by NMF and the EM algorithm is used for blindly 

estimating the parameters similar to what is done in Duong 

et al. (2010a) . In Duong et al. (2010c) , the use of a non- 
uniform TF representation on the auditory-motivated equiva- 
lent rectangular bandwidth(ERB) scale is investigated. It has 
been shown that this representation is beneficial for multi- 
channel convolutive source separation provided that the full- 
rank covariance model is used. This has also been investigated 

in Burred and Sikora (2006) for instantaneous mixtures and 

( Vincent, 2006 ) for convolutive mixtures. 
In Duong et al. (2010b) , four specific covariance models 

including the rank-1 anechoic model, the rank-1 convolutive 
model, the full-rank direct+diffuse model and the full-rank un- 
constrained model are considered. A hierarchical clustering- 
based method is used to initialize the parameters. Also, a Di- 
rection of Arrival (DoA) based approach is proposed to align 

the order of the estimated sources across all frequency bins. 
In Duong et al. (2013) some spatial location prior distribu- 

tions consistent with the theory of statistical room acoustics 
are proposed for application to the spatial covariance matri- 
ces and EM algorithms are derived for Maximum a Poste- 
riori (MAP) estimation. In Nikunen and Virtanen (2014) , a 
spatial covariance matrix model is proposed which consists 
of a weighted sum of Direction of Arrival kernels. This co- 
variance model is combined with the Complex NMF (CNMF) 
framework proposed in Sawada et al. (2013) and the update 
relations for finding the unknown parameters are subsequently 

derived. 
In Arberet et al. (2010) , the n th source variance matrix 

V n ( F × T ) consisting of the above variance elements, v n ( f, 
t ), is approximated as a product of two non-negative matrices 
W n ( F × K ) and H n ( K × T ) which specify the basis compo- 
nents and time activation matrices respectively. It is assumed 

that the number of the components K required for modeling 

each source is known in advance. However this may not be 
a suitable presumption when the goal is to blindly separate 
the individual source signals and there is no prior informa- 
tion about the source types. Here, we propose a Bayesian 

NMF framework to automatically infer the number of basis 
vectors for each source. In our first approach, we develop a 
Bayesian framework assuming that the time activation ma- 
trix elements H n are random variables with a Gamma prior 
distribution. An EM algorithm is developed for deriving the 
update equations. The update relations given in Arberet et al. 
(2010) are replaced with the newly derived relations for the 
factors of the source variance matrices which are obtained 

through MAP estimation. We have also modeled the temporal 
dependencies through imposing constraints to the prior distri- 
bution of the temporal activations. A procedure inspired from 

Mohammadiha et al. (2012) is used for updating the scale 
parameters of the prior distributions of the time activations. 

In the second approach, we favor the smoothness of the 
results through applying an inverse-Gamma chain prior dis- 
tribution inspired from Févotte et al. (2009) . 

In Smaragdis et al. (2014) , a comprehensive study of the 
NMF methods which model the temporal statistics is done. 
One flexible approach for considering the actual temporal 
dependencies is to impose constraints on the model activa- 
tions ( Essid and Févotte, 2013; Févotte, 2011; Févotte et al., 
2009; Mohammadiha et al., 2013; 2012; Virtanen, 2007; 
Wilson et al., 2008 ). These approaches are called dynamic 
or smooth NMF. They differ by the used penalty term in 

non-probabilistic settings or by the choice of the observa- 
tion model and prior structure in the Bayesian frameworks. 
In Virtanen (2007) , temporal continuity and sparseness con- 
straints are applied to the activation coefficients. Temporal 
continuity is favored by using a cost term which is the sum 

of squared differences between the activations in adjacent 
frames, and sparseness is favored by penalizing nonzero ac- 
tivations. A Non-negative Dynamical System (NDS) is intro- 
duced in Févotte et al. (2013) for modeling speech spectra. It 
can be regarded as an extension of NMF to support Marko- 
vian dynamics. Non-negativity preserving Gamma or inverse- 
Gamma Markov chain priors are considered in Févotte (2011) ; 
Févotte et al. (2009) ; Mohammadiha et al. (2013 , 2012) and 

Markov random fields in Kim and Smaragdis (2013) . In 

Nakano et al. (2010) , the spectrogram of music signals is 
modeled as the combination of Markov-chained spectral pat- 
terns. 

The approaches proposed in this paper can be regarded 

as Bayesian extensions of the method proposed in Arberet 
et al. (2010) accentuating the smoothness of the estimates. 
The Gamma prior model has been chosen for its effec- 
tiveness in modeling sparse parameters. Meanwhile, Gamma 
and inverse-Gamma prior distributions are preferred be- 
cause we are going to model non-negative elements of 
the activation matrix, thus other sparse prior distributions 
such as Laplace cannot be useful here. The novel as- 
pects of our proposed approaches can be summarized as 
follows: 
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