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A B S T R A C T

Alterations in cefepime pharmacokinetic (PK) exposure and decreased bacterial susceptibility increase
the risk of treatment failure. The impact of susceptible-dose-dependent (SDD) minimum inhibitory con-
centrations (MICs), i.e. 4–8 μg/mL, on target attainment rates for cefepime in febrile neutropenia (FN) is
unclear. We sought to identify optimal cefepime regimens against SDD cefepime MICs in FN using a mod-
elling and simulation approach. Creatinine clearance (CLCr) and body surface area (BSA) covariate-
adjusted models of clearance were evaluated. Monte Carlo simulations representing 10 000 patients were
completed to assess various dosing strategies (i.e. 3–8 g/day infused over 0.5–24 h, replaced every 6–24 h)
and predict probabilities of target attainment (PTAs) for unbound cefepime. Nine patients received cefepime
2 g every 8 h (q8h) (0.5-h infusion). A two-compartment PK model with BSA- and CLCr-adjusted clear-
ance was fit to the data. Mean population values for total clearance (6.3 ± 1.1 L/h), intercompartmental
clearance (6.9 ± 2.8 L/h), and central (14.8 ± 3.8 L) and peripheral (10.9 ± 4.6 L) distribution volumes were
all estimated with <50% CV. Simulated dosing regimens of 3–4 g/day administered as continuous infu-
sions and doses of 2 g administered q6h (0–5 h infusion) to q8h (4-h infusion) achieved ≥90% PTA at MICs
up to 8 μg/mL. Simulated regimens of 1 g q8h (4-h infusion) or 1 g q6h (0.5-h infusion) achieved ≥90%
PTA only against MICs up to 4 μg/mL. High-dose prolonged infusion or more frequent cefepime regi-
mens may be necessary to treat FN organisms with SDD MICs.

© 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

1. Introduction

Antimicrobial resistance among Enterobacteriaceae has
forced the re-evaluation of cefepime susceptibility breakpoints.
Increasing cefepime minimum inhibitory concentrations (MICs)
are associated with higher rates of in-hospital mortality among
cefepime-treated patients [1–5]. The Clinical and Laboratory
Standards Institute (CLSI) defines Enterobacteriaceae MIC suscep-
tibility breakpoints as follows: susceptible, ≤2 μg/mL; susceptible-
dose-dependent (SDD), 4–8 μg/mL; and resistant, >8 μg/mL [6]. The

European Committee on Antimicrobial Susceptibility Testing
(EUCAST) interpretive criteria for Enterobacteriaceae have
dramatically lower MIC breakpoints of 1 μg/mL and 4 μg/mL for
susceptibility and resistance, respectively [7]. Thus, MICs within
the SDD range are likely to require more aggressive dosing to yield
ideal activity.

Correspondingly, patient populations with altered pharmaco-
kinetics are expected to have variable probabilities of achieving
pharmacokinetic/pharmacodynamic (PK/PD) targets for cefepime.
Because the duration that the unbound cefepime concentration
remains above the MIC (fT>MIC) is the PK/PD efficacy target for
β-lactams such as cefepime [8], decreasing cefepime fT>MIC

significantly contributes to negative outcomes [9]. For high-risk
patients, the cefepime fT>MIC should minimally exceed 60–70% of
the dosing interval to reduce the risk of mortality in the setting of
severe infection [8,9].
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We have previously described cefepime pharmacokinetics using
a parametric approach among patients with neutropenic fever re-
ceiving standard dosing regimens [10]. The purpose of our previous
investigation was to provide treating clinicians with initial esti-
mates of cefepime pharmacokinetics that could be used to guide
dosing; however, robust simulations were not evaluated at that time.
In the present analysis, we sought to expand upon our initial study
through the development of a non-parametric population pharma-
cokinetic (PK) model that could be used to simulate cefepime dosing
strategies associated with optimal fT>MIC attainment against SDD MICs.

2. Materials and methods

2.1. Population, sample procurement and sample analysis

Patients with neutropenic fever (n = 9) receiving cefepime had
venous blood collected (up to 11 time points per patient) [10]. All
concentrations were obtained after a dose at steady-state and prior
to the subsequent dose given (i.e. on a single concentration–time
curve). Demographics and covariates (e.g. age, weight and serum
creatinine) were obtained. Creatinine clearance (CLCr) was calcu-
lated for each patient [11] at the time of PK sampling. The study
was approved by the Institutional Review Board at each investiga-
tor’s primary institution. Serum cefepime concentrations were
determined using liquid chromatograph–tandem mass spectrom-
etry (LC-MS/MS) as previously described [10]. The lower limit of
quantification for the assay was 10 ng/mL in a 100 μL sample for
injection. For the present analysis, a linear curve was generated for
relevant concentrations, and the assay was linear between 0.3 μg/mL
and 80 μg/mL with 103–101% accuracy and 6.4–3.9% precision.

2.2. Pharmacokinetic models

The Nonparametric Adaptive Grid (NPAG) algorithm [12,13] within
the Pmetrics v.1.5.0 package [13] for R [14] was utilised to conduct
the population PK/PD analysis. Multiple physiologically relevant com-
partmental population PK models were tested. Covariate effects were
evaluated using a backward stepwise regression of covariates on PK
parameters. Pre-planned analyses were conducted to evaluate the
impact of calculated CLCr [11] and body surface area (BSA) on
cefepime clearance (Model 1). Clearance was linearly scaled to both
CLCr and BSA, standardised to 120 mL/min and 1.73 m2, respectively.
In addition, cefepime clearance was limited using a non-linear Hill-
type function [15] to evaluate potential saturability of cefepime
clearance (Model 2, not shown). Differential equations for the
covariate-adjusted, two-compartment PK model (Model 1) were:
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where CLT is the total cefepime clearance rate (L/h), CLR is the renal
cefepime clearance rate (L/h), Vc is the central cefepime volume of
distribution (L), Vp is the peripheral cefepime volume of distribu-
tion (L) and Q is the intercompartmental cefepime clearance
rate (L/h).

Assay error [standard deviation (SD)] and process noise were
accounted for using an error polynomial as a function of the
measured concentration, Y (i.e. SD = C0 + C1Y) with C0 and C1 inputs
of 0.7 and 0.15, respectively. The inverse of the observed variance

(SD2) was used as the first estimate for observation weighting [13].
Residual error was estimated using the multiplicative gamma (i.e.
error = γ*SD), which was given a starting value of 2. The best-fit
model was determined by the rule of parsimony and Akaike’s in-
formation criterion (AIC) score. The final PK model was used to
generate the simulations (see Section 2.3). Goodness-of-fit and pre-
dictive performance of the competing models were evaluated as
previously described [16], with model performance and validity as-
sessed via simulation, generation of normalised prediction
distribution errors, and construction of visual predictive checks.
Median Bayesian posterior parameter estimates for each patient
enabled calculations of posterior-predicted cefepime concentra-
tions for each study patient. A non-compartmental analysis of the
posterior-predicted cefepime concentration–time profiles was con-
ducted to facilitate comparison of the individual-predicted cefepime
exposures in our patients with PK estimates reported in previous
studies.

2.3. Simulations and probability of target attainment (PTA)

For simulations, a covariate-based sampling method was em-
ployed to evaluate exposures predicted by the covariate-adjusted
PK model [13,17]. The distributions of covariate values sampled were
constrained to fall within the observed values in the original patient
population (e.g. BSA range 1.7–2.2 m2 and CLCr range 108–220 mL/min)
using a truncated simulation strategy. Monte Carlo sampling of pa-
rameters and covariate values from the weighted, multivariate,
unimodal distribution generated a population with 10 000 param-
eter sets. From the simulated population, concentration–time profiles
were generated for cefepime regimens of 3–8 g/day in 0.5-h incre-
ments. Simulated doses were infused over 0.5, 2, 4 or 24 h and were
replaced every 6, 8, 12 or 24 h. Predicted concentrations were cor-
rected for protein binding (i.e. 80% unbound drug [18]) and were
evaluated against a PK/PD target of fT>MIC ≥68% [9] across doubling
MICs from 1–64 μg/mL over the first 24 h of therapy.

3. Results

3.1. Demographics

A total of nine patients contributed 93 concentrations, with eight
of nine patients contributing 11 samples in a 24-h period after
steady-state (i.e. ≥48 h after treatment initiation). Patients within
the PK cohort had a mean ± SD weight of 82.5 ± 7.6 kg, a mean ±
SD BSA of 1.95 ± 0.14 m2 and a mean ± SD calculated CLCr of 149 ±
35.5 mL/min (range 108.8–220.3 mL/min). Patients ranged in age
from 33–65 years (mean 54.4 years).

3.2. Pharmacokinetic model selection and parameters

Measured cefepime concentrations ranged from 1.30–160 μg/mL.
For Model 1, the NPAG-fitted linear-clearance population model
identified nine support points. The population PK model pro-
duced good fits of the observed concentrations (R2 = 91.3%), with
low bias and imprecision (0.67 μg/mL and 9.66 μg2/mL2, respec-
tively; Fig. 1A left). Likewise, the Bayesian individual posterior fits
of the observed data were excellent (R2 = 95.7%, bias = −0.03 μg/mL,
imprecision = 0.998 μg2/mL2; Fig. 1A right). Predictive checks of
Model 1 revealed that ca. 5% (n = 5/93) of observations fell outside
of the respective 95% confidence bands of the prediction intervals
(Fig. 1B). Model 2 also produced good population and posterior fits
with highly acceptable predictive checks (data not shown). Model
2 was more complex than Model 1 but was not significantly more
explanatory, as indicated by a marginally higher AIC value (556 vs.
551.7, respectively; P = 0.55). Thus, Model 1 was selected as the final
PK model for simulations.
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