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Abstract 

We provide the first direct comparison of sum-product networks (SPNs) and deep-belief networks on speech, and the first application 
of SPNs to acoustic-articulatory inversion. Interestingly, speech from individuals with cerebral palsy is reconstructed significantly more 
accurately across all manners of articulation using SPNs than when using DBNs. In order to select appropriate input parameters, we first 
compare MFCCs, wavelets, scattering coefficients, and vocal ‘tract variables’ as predictor variables to phonological features. Here, MFCCs 
provide for more accurate classification over a broad array of phonological categories (in the high 90s in many cases) than the other feature 
types. All experiments use the MOCHA-TIMIT and TORGO acoustic-articulatory databases. 
© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

A classic perspective of speech production considers each 

phoneme to be a product of several phonological features 
which loosely correspond to the positions of articulators 
( Archibald and O’Grady, 2008 ). Theoretically, a phonologi- 
cal feature vector (e.g., [+ plosiv e, −v oi ci ng, + bi labi al, . . . ] 
for / p /) uniquely identifies each phoneme, and correct phone 
classification should inform us of the position of articulators, 
and vice versa. Several studies have in fact used phonolog- 
ical (or “articulatory”) features to classify speech ( Frankel 
et al., 2007; Fukuda et al., 2003 ), with a particular benefit 
in the presence of extreme environmental noise ( King et al., 
2007 ). For instance, incorporating such features with max- 
imum mutual information into hidden Markov systems can 

reduce word-error rates from 25% to 19.8% on English spon- 
taneous scheduling tasks ( Metze, 2007 ). 

Despite their empirical success, modeling speech articula- 
tion discretely cannot inherently account for more complex 
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aspects of articulatory organization for which parallel and 

self-organizing theories may be more appropriate ( Rudzicz 
et al., 2008; Smith and Goffman, 2004 ). In order to study the 
long-term dynamics of speech, we require a framework of dy- 
namical systems into which continuous data can be explored. 
Task dynamics ( Saltzman and Munhall, 1989 ) introduces the 
notion that the dynamic patterns in speech are caused by over- 
lapping gestures , which are high-level abstractions of goal- 
oriented reconfigurations of the vocal tract, such as bilabial 
closure, or velar opening. Here, all implicit spatiotemporal 
behavior underlying speech is the result of the interaction 

between the abstract intergestural dimension (between tasks) 
and the geometric interarticulator dimension (between phys- 
ical actuators) ( Saltzman and Munhall, 1989 ). 

Each gesture occurs within a tract variable (TV): lip aper- 
ture and protrusion ( LA, LP ), tongue tip constriction location 

and degree ( TTCL, TTCD ), tongue dorsum constriction loca- 
tion and degree ( TDCL, TDCD ), velar opening ( VEL ), glottal 
vibration ( GLO ), and lower tooth height ( LTH ). A gesture to 

close the lips, e.g., would set LA close to zero. Not all of 
these canonical TVs are used in our current work. The dy- 
namic influence of gestures on the relevant TV is modeled by 

a non-homogonous second-order linear differential equation 
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analogous to a damped mass-spring ( Reimer and Rudzicz, 
2010 ). Here, TVs are derived from electromagnetic articu- 
lography (EMA), which tracks the positions of points on the 
articulators, as described in Section 3.3 . 

Phonological features and TVs, in a sense, measure the 
same phenomena. Phonological features are discrete represen- 
tations of articulatory goals that are easily interpretable but 
can lead to overgeneralization and quantization error. Tract 
variables provide a continuous representation of intent sub- 
ject to (and filtered by) individual articulatory constraints that 
are relatively detailed but difficult to manipulate. Both ap- 
proaches represent relevant speech goals and both make as- 
sertions about the general position of articulators. 

Relating acoustics and articulation through statistical mod- 
els can be challenging when these modalities are disrupted 

biologically, as in neuro-motor disorders such as cerebral 
palsy (CP). In CP, damage to the cranial nerves that con- 
trol the articulatory musculature of speech ( Moore and Dal- 
ley, 2005 ) can result in reduced control of phonation, hy- 
pernasality, heavily slurred speech, and a more diffuse and 

less differentiable vowel target space ( Kent and Rosen, 2004 ). 
Considering this population, and individuals with dysarthria 

generally, provides an important measure of the robustness of 
our acoustic-articulatory models. 

We design two experiments that relate the phonological 
and task dynamics theories of speech production to their 
acoustics, within the context of atypical speech articulation. 
Experiment 1 ( Section 4 ) broadly examines the relationships 
between articulatory configurations and three types of acous- 
tic features that differ in their representation of the spectrum, 
and correlational and discriminative relationships are sought 
through the use of an SVM classifier. We choose to examine 
Mel-frequency cepstral coefficients, discrete wavelet coeffi- 
cients, and scattering coefficients due to the relative ubiquity 

of the first, and the theoretical advantages of the others, as 
described in Section 2 . Experiment 2 ( Section 5 ) uses the 
results of that feature analysis to perform tractable acoustic- 
to-articulatory inversion using deep-belief networks (DBNs) 
and sum-product networks (SPNs), which provides the first 
comparison of these two methods for this task. DBNs have 
already been applied to acoustic-articulatory inversion, but 
SPNs have several uniquely interesting aspects, including a 
partition function that is guaranteed to be tractable given cer- 
tain limitations of the network structure. 

2. Acoustic features 

In the following experiments, Mel-frequency cepstral coef- 
ficients (MFCCs), discrete wavelet coefficients (DWCs), and 

scattering coefficients (SCs) are considered. Given the relative 
ubiquity of MFCCs ( Ganchev, 2011 ), only the latter two are 
discussed here. 

2.1. Discrete wavelet coefficients 

Wavelets are signal filters localized in time and frequency 

which can represent transient events in a signal, which can be 

common in cerebral palsy. A wavelet transform is the projec- 
tion of a signal onto a wavelet. By using the ‘dual form’ of a 
collection of wavelets, the original signal can be reconstructed 

in a numerically stable way, which implies complete char- 
acterization of the spectrum ( Daubechies, 1992 ). A wavelet 
is admissible if it is centered around 0 in the time domain, 
and has a quick decay (most of its energy surrounds some 
points ± ξ 0 ). Dilating and translating this ‘mother wavelet’ 
allows for the creation of a family of wavelets, which can 

characterize a signal. Formally, given an admissible mother 
wavelet ψ , a family of wavelets is 

ψ a,τ (t ) = 

1 √ 

a 

ψ 

(
t − τ

a 

)

for all time shifts τ and scaling factors a ( Quatieri, 2008 ). A 

family of wavelets has frame bounds over a signal f , defined 

in the discrete case as 

A ‖ f ‖ 2 ≤
∑ 

m,n 

|〈 f , ψ m,n 〉| 2 ≤ B‖ f ‖ 2 

For m, n ∈ Z , 0 < A ≤ B < ∞ . The family of transforms es- 
sentially conserves the energy of the original signal f . In our 
work, the dyadic wavelet transform ( Daubechies, 1992; Mal- 
lat, 1989 ), influenced by multiresolution analysis, computes a 
wavelet transform with a simple iterative algorithm. 

2.2. Scattering coefficients 

Andén and Mallat (2014) drew parallels between Mel- 
frequency spectrum coefficients (MFSCs, i.e., MFCCs prior 
to the cosine transform) and wavelet transforms. An MFSC 

is approximately M ( n, l ) ≈ | f ∗v l | 2 ∗| w | 2 ( n ), where v l is the im- 
pulse response of the Mel-scale filter and w is the window- 
ing filter used in calculating short-time Fourier transforms 
( Mallat, 2012 ). Intuitively, the MFSC is the convolution of 
the energy of the Mel-scale subband and a lowpass filter ( w 

typically has a much smaller bandwidth than the equivalent 
Mel-scale filter). Taking the power of a convolved signal in 

the time domain effectively transforms it into a low frequency 

characterization. Therefore v l captures high frequency com- 
ponents, which are then modulated to the origin, and cleared 

of noise with w . Intuitively, scattering coefficients (SCs) ex- 
tend MFCCs by computing modulation coefficients of mul- 
tiple orders through cascades of wavelet convolutions. They 

have recently been shown to provide state-of-the-art phone 
classification with TIMIT ( Andén and Mallat, 2014 ). While 
MFCCs describe local timescales efficiently at around 16 ms 
to 25 ms in speech, SCs can serve as stable and invariant 
signal representations over much larger timescales. 

Scattering transforms iteratively apply convolutions and 

modulations to transform (and recover) high-frequency com- 
ponents into lower bandwidths, then apply a lowpass filter 
to average the lower bandwidths. The combination of power 
spectrum modulation and wavelet transforms is a character- 
ization which retains high frequency information while re- 
maining stable to deformation in those frequencies ( Andén 

and Mallat, 2014 ). 
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