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Abstract

A parallel computational implementation of modern meshless system is presented for explicit for 3D bulk forming simulation prob-
lems. The system is implemented by reproducing kernel particle method. Aspects of a coarse grain parallel paradigm—domain decom-
pose method—are detailed for a Lagrangian formulation using model partitioning. Integration cells are uniquely assigned on each
process element and particles are overlap in boundary zones. Partitioning scheme multilevel recursive spectrum bisection approach is
applied. The parallel contact search algorithm is also presented. Explicit message passing interface statements are used for all commu-
nication among partitions on different processors. The parallel 3D system is developed and implemented into 3D bulk metal forming
problems, and the simulation results demonstrated the efficiency of the developed parallel reproducing kernel particle method system.
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1. Introduction

The non-linear finite element formulations for non-line-
arity of geometric and material have been well developed
and a lot of significant works have been completed in bulk
forming analysis. Nevertheless, FEMs are still ineffective in
dealing with some extreme material distortions owing to
severe mesh distortion. There are difficulties in solving
problems involving large deflections and moving disconti-
nuities. Typical problems include extremely large deforma-
tions in manufacturing processes, the propagation of
interface between solids and liquids in casting, the propa-

Abbreviations:. RKPM, reproducing kernel particle method; EFG,
element free Galerkin method; PIM, point interpolation method; SPH,
smoothed particle hydrodynamics; FEM, finite element method; RSB,
recursive spectrum bisection; MRSB, multilevel recursive spectrum bisec-
tion, DDM, domain decomposition method; MPI, message passing
interface; EBC, essential boundary condition; SYMMLQ, sparse sym-
metric equations; PE, process element.
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gation of cracks with arbitrary and complex paths in fail-
ure, and the tracking of the growth of phase boundaries
and microcracking in advanced materials development.
Some of FEMs require remeshing models in large deforma-
tion conditions; it still requires considerable computational
efforts. Meshless methods eliminate mesh distortion for
both large shape design changes and large deformation
non-linear analysis.

A variety of meshless modeling methods have recently
emerged [1]. RKPM was proposed by Liu et al. [1-5,39]
to improve the accuracy of the SPH [27-29,31,32] method
for finite domain problems. These methods have advanta-
ges over traditional FEMs for their ability to handle large
deformation problems without mesh distortion, and for
their solution accuracy due to the large domain of influence
covered by particles/nodes. In this method, the kernel func-
tion is modified by introducing a correction function to
meet the reproducing conditions. The resulting modified
kernel function exactly reproduces polynomials to a specific
order and thereby fulfills the completeness requirement.
The shape functions developed from the method were later
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proven to be equivalent to moving least-squares kernel
interpolates if linear basis functions were used [1-3].
Liu et al. also introduced wavelets [5] as the kernel func-
tions and successfully applied RKPM to multiple scale
analysis.

More recently, some effort has also been devoted to the
solution of bulk metal forming processes by means of
meshless approaches. Referenced papers encompass the
following operations: ring compression [6,7], upsetting [6—
13] and extrusion [6,7,10,14,15].

Meshless methods encounter the major technical bar-
rier-low computation efficiency. Because meshless methods
are based on the high order interpolation, the computation
time of meshless requires much longer than FEMs. By tak-
ing a general view to the content of these papers it appears
that major results are generally limited to 2D problems and
simple 3D problems. Therefore, meshless methods are not
wildly applied in practice. Parallelization of meshless codes
is the way to settle expense of meshless computations. The
parallel meshless methods to decompose the domain into
several subdomains to solve are called DDM. DDMs are
useful in two contexts. First, the division of problems into
smaller problems through usually artificial subdivisions of
the domain is a means for introducing parallelism into a
problem. In this manner, problems that are intractable
on serial computers can be solved on parallel computers.
Second, many problems involve more than one mathemat-
ical model, each posed on a different domain, so that
domain decomposition occurs naturally. DDMs are wildly
used for explicit FEM problems [42,43,45]. It is natural
that DDMs [44] can advance the meshless computation
efficiency easily.

The present treatment will focus on the RKPM for
explicit dynamic analysis of bulk metal forming problems,
but the procedures can directly apply to some other mesh-
less methods (e.g. EFG [1,30], PIM [16]) without difficul-
ties. Several distinct advantages of RKPM are its ability
to accurately model extremely large deformations without
mesh distortion problems and its ease to adaptive modeling
by simply changing particle definitions for desired refine-
ment regions.

In this paper, an overview of a Lagrangian RKPM for
non-linear explicit dynamic analysis is first given. A general
description of the parallel implementation is described. The
parallel procedure primarily consists of a mesh partitioning
pre-analysis phase, a parallel analysis phase that includes
explicit message passing among partitions on separate pro-
cessors. In the finial, the numerical examples have been pre-
sented to demonstrate the efficient parallel 3D RKPM
system.

2. Weak form and discretization of RKPM for contact
problems

The reproducing kernel approximation [1-5] of a func-
tion u(X) in a domain Q. is expressed

u”(X):/Q DX — V)u(Y)dQ,, (1)

where u“(X) is the reproduced of function u(X), and @, is
the window or kernel function with compact support.

In the following X represents the material coordinates, x
is the spatial coordinate and u is the displacement of the
particles and ¢ denotes the time.

Discretizing the domain Q, by a set of particles
{X1,Xs,..., Xnp}, where NP is the total number of parti-
cles, the integral is approximated by the following
summation:

NP

w(X, 1) = > N;(X)u (1), (2)

I1=1

where N/X) is the Lagrangian shape function defined by

Ni(X) = C(X; X — X;) P (X — X1)AV . 3)

C(X; X — X)) is the correction function and AV is the vol-
ume of particle I. The more details on the construction of
the shape function of RKPM can be found in Refs. [1-5].

For an approximation with the virtual work principle,
the essential boundary conditions (EBCs) must be satisfied
directly by the interpolation functions or accommodated
by augmenting the variational statement with constraints.
A major difference between RKPM and other methods
(e.g. FEMs) is the manner in which EBCs can be enforced
directly. The non-local interpolation condition of equation
poses an additional computational challenge. Whereas
EBCs for finite elements are imposed locally at particles
(because they possess the Kronecker delta property), The
EBCs enforcement with RKPM are non-local over a patch
of particles/nodes. In some cases, the EBCs can be ade-
quately approximated by local specification at the particles
(assuming a Kronecker delta property). This approxima-
tion can be accurate, by St. Venant’s Principle, when the
primary regions of interest are away from the EBCs. In
general, however, a coupled set of equations is usually
solved, even for explicit analyses. Previous efforts used
Lagrange multipliers to constrain the variational statement
[17] or a set of simultaneous equations is directly solved. In
either case, significant computations were generally neces-
sary to enforce the EBCs. These procedures also are not
well suited for parallel processing, since they must generally
be made over multiple processors.

Kent [18] proposes an alternate approach that may also
require significant computational effort, as it is algebrai-
cally equivalent to other existing equations solving meth-
ods. By treating the imposition as a transformation of
the interpolation functions, however, this form is better
for parallel processing. Describing the EBC equations by

NP

g =) Ns(Xpuy, (4)
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