
Ensemble environment modeling using affine transform group

Yu Tsao a,⇑, Payton Lin a, Ting-yao Hu a, Xugang Lu b

a Research Center for Information Technology Innovation, Academia Sinica, Taiwan
b Spoken Language Communication Laboratory, National Institute of Information and Communications Technology, Kyoto, Japan

Received 10 July 2014; received in revised form 22 November 2014; accepted 24 December 2014
Available online 8 January 2015

Abstract

The ensemble speaker and speaking environment modeling (ESSEM) framework was designed to provide online optimization for
enhancing workable systems under real-world conditions. In the ESSEM framework, ensemble models are built in the offline phase
to characterize specific environments based on local statistics prepared from those particular conditions. In the online phase, a mapping
function is computed based on the incoming testing data to perform model adaptation. Previous studies utilized linear combination (LC)
and linear combination with a correction bias (LCB) as simple mapping functions that only apply one weighting coefficient on each
model. In order to better utilize the ensemble models, this study presents a generalized affine transform group (ATG) mapping function
for the ESSEM framework. Although ATG characterizes unknown testing conditions more precisely using a larger amount of param-
eters, over-fitting issues occur when the available adaptation data is especially limited. This study handles over-fitting issues with three
optimization processes: maximum a posteriori (MAP) criterion, model selection (MS), and cohort selection (CS). Experimental results
showed that ATG along with the three optimization processes enabled the ESSEM framework to allow unsupervised model adaptation
using only one utterance to provide consistent performance improvements.
� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Towards ubiquitous adoption of human–machine com-
munication (Deng and Huang, 2004), robustness in auto-
matic speech recognition (ASR) (Junqua et al., 1996) has
been addressed by noise-robust techniques (Li et al., 2014),
data reduction (O’Shaughnessy, 2008), and predictive classi-
fication (Huo and Lee, 2000). To address the technical chal-
lenges of performing according to the user’s intention,
selection, execution, and evaluation (Norman, 1984), envi-
ronment modeling or model adaptation methods (Lee,
1998; Sankar and Lee, 1996,) extend workable systems to

real-world situations by modeling specific speakers and
acoustic environments with unlabeled and limited amounts
of adaptation data. Fig. 1 presents the structure of environ-
ment modeling, where either one general model (Category-1)
or multiple environment specific models (Category-2) are
first prepared as a structure using the entire training data
set. In the online phase, speech segments from incoming test-
ing conditions are collected to derive a mapping function,
Fu(�), that performs model adaptation to obtain a target
model, KY, minimizing the differences between training
and testing conditions. Parameters in the mapping function
can be estimated via criterion such as maximum likelihood
(ML) and maximum a posteriori (MAP).

For Category-1, a single source model (KX in Fig. 1) is
built to reflect the average statistics of the whole training
data set. The mapping function is then estimated to adapt
the source model to the target model. Several estimation
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algorithms have been proposed such as linear and nonlin-
ear stochastic matching approaches (Lee, 1998; Sankar
and Lee, 1996; Suredran et al., 1999), signal bias removal
(SBR) (Rahim and Juang, 1996), maximum likelihood lin-
ear regression (MLLR) (Leggetter and Woodland, 1995;
Gales, 1997), maximum a posteriori linear regression
(MAPLR) (Chesta et al., 1999; Siohan et al., 2001;
Siohan et al., 2002), structural Bayesian linear regression
(SBLR) (Watanabe et al., 2014), VTS-based model adapta-
tion (Kim et al., 1998), joint compensation of additive and
convolutive distortions (JAC) (Gong, 2005; Hu and Huo,
2007; Li et al., 2009), and JAC with unscented transform
(JAC-UT) (Hu and Huo, 2006; Li et al., 2010).

For Category-2, multiple models ({K1, K2, . . . , KP} in
Fig. 1) that are trained using subsets of the entire training
data allow more effective local statistics of environment
conditions. In these cases, the mapping function for adap-
tation needs to transform multiple models to the target
model. For efficient estimation of mapping functions, sev-
eral techniques have been proposed such as reference
speaker weighting (RSW) (Hazen, 2000), eigenvoice
(Kuhn et al., 2000), cluster adaptive training (CAT)
(Gales, 2000; Yu and Gales, 2006), speaker clustering
(Kosaka et al., 1996; Padmanabhan et al., 1998), probabi-
listic 2DPCA/GLRAM (Jeong, 2012), tensor voices
(Jeong, 2014), and ensemble speaker and speaking environ-
ment modeling (ESSEM) (Tsao and Lee, 2009). Generally,
a simple mapping function such as best first (BF) (Tsao
et al., 2012), linear combination (LC) (Kuhn et al., 2000;
Gales, 2000), or linear combination with correction bias
(LCB) (Tsao et al., 2014) is used to perform adaptation.
However, a mapping function that utilized more free
parameters could enable more accurate model estimation
when larger amounts of adaptation data become available.
Therefore, the present study proposes an affine transform
group (ATG) mapping function that applies an affine
transform for each model in {K1, K2, . . . , KP} to compute
the target model. The ATG mapping function expands
upon the previous ESSEM framework (Tsao et al., 2014;
Tsao et al., 2012) and is denoted as ATG-ESSEM in the
following discussion. While the usage of more free param-
eters can provide better environment modeling capabilities,
over-fitting issues must be considered when the amount of
adaptation data is insufficient. A previous study proposed

to adopt the MAP criterion to handle over-fitting (Tsao
et al., 2012). The present study proposes two additional
approaches to enhance optimization processes: model
selection (MS) and cohort selection (CS). This study also
compares four different types of affine transform matrix:
full, diagonal, scalar, and identity matrices, in order to
evaluate the benefits of added complexity.

To verify effective model adaptation using ATG-ESSEM
with the MAP criterion, MS, and CS, experiments were con-
ducted on Aurora-4, a large vocabulary continuous speech
recognition (LVCSR) task (Parihar and Picone, 2002;
Parihar et al., 2004; Hirsch, 2001; Au Yeung and Siu,
2004). Unsupervised ESSEM adaptation could also enhance
the parameter estimation of deep neural networks (DNNs)
(Seltzer et al., 2013). Some adaptation methods have been
proposed in DNN–HMM systems by using linear transfor-
mations (Neto et al., 1995; Li and Sim, 2010; Yao et al.,
2012; Gemello et al., 2007; Ochiai et al., 2014). Due to the
enormous amount of parameters, DNN has limited adapta-
tion capability when only limited adaptation data is avail-
able. Since DNN parameter estimation is based on
discriminative criterion, adaptation performance is sensitive
to label errors. A combination of GMM and DNN has also
effectively enhanced ASR performance (Liu and Sim, 2014)
since the GMM–HMM framework is based on generative
training paradigms for more robust unsupervised adapta-
tion. This study evaluates the ATG-ESSEM framework
using a difficult task designed to simulate “real-world” con-
ditions: per-utterance unsupervised adaptation with lots of
fluctuating SNRs. Experimental results confirmed the effec-
tive adaptation capability of ATG-ESSEM with only one
adaptation utterance. Discussion related to adaptation
under future DNN–HMM systems will be included follow-
ing results of our GMM–HMM findings.

The rest of this paper is organized as follows: Section 2
reviews the ESSEM framework and the ATG mapping
function, Section 3 derives three optimization processes
to enhance ATG-ESSEM performance, Section 4 reports
results and discusses extensions of ESSEM to DNN model
parameter adaptation, and Section 5 offers concluding
remarks.

2. Ensemble environment modeling and affine transform

group (ATG)

In this section, the ESSEM framework is first described,
followed by the presentation of the proposed ATG map-
ping function.

2.1. Ensemble speaker and speaking environment modeling

(ESSEM)

Fig. 2 illustrates the ESSEM framework, which consists
of offline and online phases. In the offline phase, a single
source model KX is first estimated based on the entire set
of training data. This source model is trained on speech
data collected from a variety of environment conditions
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Fig. 1. Structure of environment modeling and model adaptation.
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