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1. Introduction

ABSTRACT

Polynomial rooting direction finding (DF) algorithms are a computationally efficient
alternative to search-based DF algorithms and are particularly suitable for uniform
linear arrays (ULA) of physically identical elements provided mutual interaction among
the array elements can be either neglected or compensated for. A popular polynomial
rooting algorithm is Root-MUSIC (RM) wherein, for an N-element array, the estimation
of the directions of arrivals (DOA) requires the computation of the roots of a 2N—2-order
polynomial for a second order (SO) statistics- and a 4N—4-order polynomial for a fourth
order (FO) statistics-based approach, wherein the DOA are estimated from L pairs of
roots closest to the unit circle, when L signals are incident on the array. We derive SO-
and FO statistics reduced polynomial rooting (RPR) algorithms capable to estimate L
DOA from L roots only. We demonstrate numerically that the RPR algorithms are at least
as accurate as the RM algorithms. Simplified algebraic structure of RPR algorithms leads
to better performance than afforded by RM algorithms in saturated array environment,
especially in the case of FO methods when number of incident signals exceeds number
of elements and under low SNR and/or small sample size conditions.

© 2009 Elsevier B.V. All rights reserved.

and phase of the array element patterns, sometimes
referred to as array manifold calibration. Normal accura-

Super-resolution direction finding (DF) algorithms for
linear arrays fall into two broad categories: search-based
algorithms, as exemplified by MUSIC [1,2] and root-based
algorithms such as Root-MUSIC (RM) [3,4], ESPRIT [2].
Search algorithms make no assumptions about the
algebraic structure of the array steering vectors but
require that they be known to great accuracy, especially
if a high degree of angular resolution is called for. In that
case they can also be computationally quite demanding. In
practice the determination of the array steering vector
amounts to an accurate measurement of the magnitude
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cies attained in such measurements are a few tenths of a
dB in amplitude and about 1° in phase, which generally is
insufficient for the design of high-resolution DF systems.
Admittedly an alternative technique would be to rely on
numerical computer simulations (either computing the
element patterns directly or inferring them from the array
geometry and the computed impedance or scattering
matrix). However our experience with comparisons of
numerical simulations using the latest commercially
available software with experimental data indicates that
presently this is not yet a fruitful approach [5].
Root-based algorithms on the other hand require no
array calibration and afford substantial computational
efficiency over search algorithms. They require that the
elements be uniformly spaced and physically identical,
which a search algorithm such as MUSIC does not. The
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more significant restriction, however, is that the array
steering vector must have the form of an array factor of a
linear array of uniformly spaced elements. Unfortunately
due to inter-element mutual coupling this idealized form
of the steering vector is practically unattainable without
compensation. Indeed, when root-based DF algorithms are
applied to a real array without some form of compensa-
tion, significant angle estimation errors can result [6].
Compensation for the effects of mutual coupling can be
realized by employing extra “dummy” elements to
equalize the active element radiation patterns [7,8]. Under
the assumption that the element radiation patterns are
sufficiently equalized, the nonnegative pseudo-spectrum
function becomes a polynomial and the DF problem is
reduced to a polynomial rooting problem [3,4], ESPRIT [2].
In case of a covariance-based RM algorithm, for an N-
element array, the degree of the polynomial equals 2N-2,
so that 2N-2 roots have to be calculated. In case of a
fourth order (FO) statistics-based RM algorithm, the
degree of the polynomial equals 4N—4 and, consequently,
4N—4 roots have to be calculated. For L incident signals,
the directions of arrivals (DOA) are calculated from the L
roots closest to the unit circle. This selection process can
introduce serious errors in saturated! array environments,
especially under low SNR and/or small sample size
conditions because the signal roots then do not stay close
to the unit circle. Unlike RM algorithms, reduced poly-
nomial rooting (RPR) algorithms do not generate extra-
neous roots,? i.e., all polynomial roots correspond to the
actual DOA. As is demonstrated in Section 4, this feature is
of particular advantage in saturated array environments,
especially in the case of FO methods when number of
incident signals L exceeds number of elements N and low
SNR and/or small sample size conditions and results in
enhanced performance of RPR algorithms over RM algo-
rithms.

The formulation of the RPR algorithms relies on the
solution of an over-determined system of linear equations
that yields the coefficients of an L degree polynomial.
Depending on the required accuracy, this system can be
solved either by using the Moore-Penrose pseudo-inverse
or by using a more accurate total-least-square (TLS)
approach [13]. Our numerical studies have shown that in
not too demanding scenarios, where the separation
between adjacent signals in the angular domain was not
very close, the two approaches gave results of comparable
accuracy. As will be demonstrated in Section 4, this
computationally lighter version of the RPR algorithms is
not inferior to RM algorithms. The RPR algorithms
themselves are derived in Sections 2 and 3. Results of

1 By a saturated array we refer to a scenario wherein the number of
emitters L is close to either the number of real sensors N, in a case of the
SO methods, or to the number of virtual sensors 2N—1, in a case of the FO
methods.

2 We comment that RPR algorithms presented herein should not be
confused with the algorithms we have recently derived in [16]. The latter
algorithms rely on different subspace decomposition principles and
require the solution of polynomials of order 2L instead of L and are, in
that sense, computationally more demanding.

comparative performance evaluations are presented in
Section 4. The conclusions are given in Section 5.

2. Linear antenna array model

Polynomial rooting-based super-resolution DF algo-
rithms such as RM [3] offer computational efficiency in
relation to the search-based DF methods [1] when the
special geometry of the uniform linear arrays (ULA) is
employed. In this case the problem of estimating the DOA
of L signals incident on N-element array is described by

Z(t) = As(t) + v(t) (1)

where z(t) is a complex column vector comprised of N
signals at the output of the array; A is N xL steering
matrix of the linear array comprised of the L column
vectors a(2;) corresponding with the DOA of the I-th
source signal; s(t) is a column vector comprised of the L
source signals incident on the array and v(t) represents
additive noise. If mutual coupling among the array
elements is compensated [9] the steering vector for a
ULA simplifies to

a@) = f@[1 et eflo2da - elko-hdayT (2)

where Q; = (0, @), &, = sin(0)) cos(¢,), 0; and ¢, represent
elevation and azimuth of the I-th source DOA, kg = 27t/4 is
a free space wave number evaluated at the receiver local
oscillator frequency, A is a wavelength, d is an inter-
element spacing and f(Q,) represents the element radia-
tion pattern. In the formulation of the SO MUSIC
algorithm [1] one estimates E,, the matrix of eigenvectors
that span the noise subspace and forms the nonnegative
function

ARQ) = a(Q)"E,EMa(Q) (3)

called pseudo-spectrum and employs the locations of its
zeros to estimate the DOA’s. For sufficiently large sample
sizes the E, can be well approximated by the eigenvectors
of the sample data covariance matrix

T
R = (1/D) ztz®)”
t=1

where ‘H’ denotes Hermitian operation. For the ULA in (2)
the A(Q) can be written in polynomial form [2] as follows:

A@2) =z N DPyy 5 (2) (4)

where z = el%d< and P,y_,(z) is the 2N—2 degree poly-
nomial in z. From (4) DOA are found from the L pairs of
complex roots of the polynomial P,y_3(2) that are closest
to the unit circle. The corresponding direction cosines are

¢ = angle(z))/ko/d, 1=1,2,...,L (5)

In view of (4), RM requires the calculation of 2N—2 roots.
For large arrays this leads to high-computational loads
and becomes a source of the numerical errors alluded to
previously.

By analogy with the SO MUSIC pseudo-spectrum, the
quadricovariance version is formulated as follows [10,11]:

AQ) = @Q) ® a"(Q)"E,Ef @(Q) ® a*(Q)) (6)
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