

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.e-jmii.com

ORIGINAL ARTICLE

Antimicrobial resistance in Campylobacter coli and Campylobacter jejuni in cynomolgus monkeys (Macaca fascicularis) and eradication regimens*

Tetsufumi Koga ^{a,*}, Wataru Aoki ^b, Takashi Mizuno ^b, Kuniko Wakazono ^b, Junki Ohno ^b, Tsunehiro Nakai ^b, Takao Nomiya ^b, Miki Fujii ^b, Keiichi Fusegawa ^a, Kazuya Kinoshita ^a, Takakazu Hamada ^a, Yoshinori Ikeda ^b

Received 14 October 2014; received in revised form 20 December 2014; accepted 26 December 2014 Available online 19 January 2015

KEYWORDS

antimicrobial resistance; Campylobacter spp. cynomolgus monkey; eradication *Background: Campylobacter* spp. are zoonotic pathogens, however, knowledge about their presence and antimicrobial resistance in nonhuman primates is limited. Our animal facility purchased cynomolgus monkeys (*Macaca fascicularis*) from various Asian countries: China, Cambodia, Indonesia, the Philippines, and Vietnam.

Methods: Colonization by *Campylobacter* spp. was investigated in 238 of the monkeys from 2009 to 2012 and antimicrobial susceptibility testing was carried out for these isolates. Furthermore, we eradicated these pathogens from these monkeys.

Results: Campylobacter spp. were isolated from 47 monkeys from three specific countries: China, Cambodia, and Indonesia, with respective isolation rates of 15%, 36%, and 67%. Two monkeys, which were each infected with Campylobacter jejuni and Campylobacter coli, showed clinical symptoms of diarrhea and bloody feces. In total, 41 isolates of C. coli and 17 isolates of C. jejuni were detected. Antimicrobial susceptibility varied: in the monkeys from China, erythromycin (ERY)-, tetracycline (TET)-, and ciprofloxacin-resistant C. coli, in the monkeys from Cambodia, amoxicillin-intermediate, TET- and ciprofloxacin-resistant C. coli and amoxicillin- and ciprofloxacin-resistant C. jejuni, and in the monkeys from Indonesia,

E-mail address: koga.tetsufumi.zj@daiichisankyo.co.jp (T. Koga).

^a Biological Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan

^b KAC Co., Ltd., Tokyo, Japan

^{*} This work was presented in part at the 12th Federation of European Laboratory Animal Science Associations, Barcelona, Spain, June 2013.

^{*} Corresponding author. Biological Research Laboratories, Daiichi Sankyo Co., Ltd., 2-58 Hiromachi 1-chome, Shinagawa-ku, Tokyo 140-8710, Japan.

76 T. Koga et al.

ciprofloxacin-resistant *C. coli* and TET- and ciprofloxacin-resistant *C. jejuni* were common (>75%). Multiresistant isolates of *C. coli* were found in monkeys from all countries and multiresistant isolates of *C. jejuni* were found in monkeys from Indonesia. The eradication rate with azithromycin was comparable to that with gentamicin (GEN) by oral administration, and was higher than those with amoxicillin-clavulanic acid (AMC) and chloramphenicol (CHL).

Conclusion: From the perspective of zoonosis, we should acknowledge multiresistant Campylobacter spp. isolated from the monkeys as a serious warning.

Copyright © 2015, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Animals kept in captivity or bred in semi-free-range outdoor areas may become infected with enteropathogens in their enclosures. Campylobacteriosis is an important zoonosis throughout the world. Thermophilic Campylobacter spp. have been isolated from the intestinal tracts of a wide variety of animals, including poultry, swine, and captive and free-range wild animals. Campylobacter spp., particularly Campylobacter jejuni and Campylobacter coli, are recognized as one of the most frequent causes of acute diarrheal disease in humans.

In recent years, concern about this pathogen has increased mainly because of the frequent isolation of antimicrobial-resistant isolates in humans and animals⁸ in both developed and developing countries, particularly with regard to the rapid emergence of fluoroquinolone-resistant and multidrug-resistant *Campylobacter* spp. Antimicrobial resistance in both medicine and agriculture is recognized by the World Health Organization (WHO), along with other various national authorities, as a major emerging public health concern. It represents a significant challenge of global dimensions to human and veterinary medicines with the prospect of therapeutic failure for life-saving treatments now a reality.

When cynomolgus monkeys (*Macaca fascicularis*) were introduced to our animal facility, or were checked during semi-annual health monitoring, or when abnormal gastro-intestinal symptoms such as diarrhea and loose stool occurred, we checked the monkeys for the presence of *Campylobacter* spp. from 2009 to 2012 and eradicated them for the following reason: some research showed that *Campylobacter* spp. were linked to gastroenteritis in nonhuman primates. ^{9–11} Infected monkeys are potential reservoirs if they are asymptomatic, and they become potential transmitters of *Campylobacter* spp. to noninfected monkeys and humans who have had contact with them. ¹² Moreover, infected monkeys might jeopardize the interpretation of experimental results. ¹³

This study was conducted to determine the prevalence and the antimicrobial resistance of *Campylobacter* spp. and to eradicate them from cynomolgus monkeys.

Material and methods

Sample collection

Two hundred and thirty-eight cynomolgus monkeys were used in this study (Table 1). These monkeys were bred in a

Table 1 Prevalence of Campylobacter spp. in monkeys from different countries of origin							
Country (place)		f monkeys	Campylobacter spp. positive no. of monkeys		No. of <i>Campylobacter</i> spp.		Prevalence rate (%)
	Male	Female	Male	Female	C. coli	C. jejuni	
China (Pingnan)	53	29	5	7	10	2	15
China (Hainan)	6	0	0	0	0	0	0
China (Guangxi)	5	0	0	0	0	0	0
China (unknown)	21	5	0	0	0	0	0
Cambodia (Kampong Thom) ^a	36	0	13	0	9	6	36
Indonesia (Uma Uma Island) ^b	0	33	0	22	22	9	67
Indonesia (others)	29	1	0	0	0	0	0
Philippines	1	5	0	0	0	0	0
Vietnam	11	2	0	0	0	0	0
Others	1	0	0	0	0	0	0
Total	163	75	18	29	41	17	0

^a Prevalence rates of monkeys from Cambodia were significantly higher than those from China (Pingnan).

^b Prevalence rates of monkeys from Indonesia were significantly higher than those from China (Pingnan) and Cambodia.

Download English Version:

https://daneshyari.com/en/article/5669053

Download Persian Version:

https://daneshyari.com/article/5669053

<u>Daneshyari.com</u>