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a b s t r a c t 

This work presents a new boundary meshfree method, named the average source method (ASM), for 

solving two-dimensional potential problems. The method is based on combining a ‘completely’ regular- 

ized boundary integral equation (CRBIE) with indirect unknowns developed in this paper, removing the 

singularity computation, and an average source technique (AST). In this approach there are two critical 

developments. One is the presentation of a new removal singularity technique that results in the CR- 

BIE, and therefore all diagonal coefficients of influence matrices can be evaluated analytically by the off- 

diagonal ones, unlike some existing meshless boundary approaches that determine diagonal coefficients 

from the fundamental solution by using a known solution, thereby doubling the solution procedure. The 

other is to introduce an AST, by which the distributed source on a segment/cell can be reduced to the 

concentrated point source and therefore the boundary integrals in the CRBIE are not necessary. Hence, in 

the ASM only boundary nodes are required for computation without involving any integration and ele- 

ment notion. Several benchmark test examples are presented to demonstrate the accuracy, convergence, 

efficiency and robustness of this new meshfree boundary-node methodology. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

As is known to all, the finite element method (FEM) and bound- 

ary element method (BEM) have been the dominant numerical en- 

gines for science and engineering applications [1–8,36] . However, 

they require resorting to an element frame for interpolants of pri- 

mary variables and the ‘energy’ integration and thus, depend on 

the generation of meshes, which can be arduous, time-consuming 

and even subjected to pitfalls, especially for complex geometry 

domains. These difficulties can be sidestepped via the so-called 

meshless/meshfree techniques, which have drawn growing atten- 

tion during the past decades and achieved outstanding progress in 

solving a wide class of boundary value problems [8–35] . 

Among the aforementioned studies, the meshless boundary 

methods have achieved remarkable progress and can be roughly 

sorted into two categories: the MFS-based type and the BIE-based 

type. The former is based on the concept of the method of funda- 

mental solution (MFS), including, but are not limited to, the MFS 

[12–14] , the boundary knot method (BKM) [15–16] , the boundary 

collocation method (BCM) [17] , the modified MFS (MMFS) [18] , the 

boundary distributed source method (BDSM) [19–20] , the regular- 

ized meshless method (RMM) [21–22] , and the singular boundary 
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method (SBM) [23–25] . The MFS, BKM and BCM generally lead to 

the ill-conditioned system. The MMFS and the BDSM need to com- 

pute some particular integrals to determine the diagonal terms. 

The RMM uses double layer kernel to express the potential to eas- 

ily remove the singularity, but the bewildering hyper singularity is- 

sue has to be faced when the boundary flux solutions are required. 

The SBM uses the null-field integral identity firstly to obtain the 

diagonal terms from the derivative of the fundamental solution, 

and then it applies a known solution to determine the diagonal 

terms from the fundamental solution [23–25] . Therefore, as stated 

in Ref. [19] , this approach amounts to solving the problem twice. In 

addition, the theoretical analysis of this approach is not rigorous, 

since it uses a false integral identity [23–25] : 
∫ 
�

∂ u ∗c ( x , y ) 
∂ n ( y ) 

d�( y ) = 

0 , x ∈ � with u ∗c ( x , y ) beings the fundamental solution of the ex- 

terior problems. The latter category [8–11,26–31] is based on com- 

bining BIEs with meshless shape functions constructed usually by 

using the moving least-square (MLS) approximation. It is mainly 

represented by the boundary node method (BNM) [26] and its vari- 

ants [27–31] . These methods exploit the merits of both the BIE in 

dimensionality reduction and the MLS in element removal. The es- 

sential difference between these methods consists in the construc- 

tion of meshless shape functions. Anyhow, they still require the 

calculation of boundary integrals. 

Inspired by the pioneering work, this study presents a new 

meshfree boundary method for 2D potential problems. The method 
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is based on combing a CRBIE with direct unknowns developed in 

this paper, which excludes the computation of both the weakly and 

strongly singular integrals, with the AST. By using the CRBIE to 

avoid the singularity of the kernel functions, the major challenge 

of the coincidence of the source and collocation points vanishes. 

By introducing the AST into the CRBIE, the distributed source on a 

segment/cell can be reduced to the concentrated point source and 

therefore the boundary integrals are no longer required. Since no 

known solution in the MMFS, RMM and SBM is applied for com- 

puting indirectly the diagonal coefficients of influence matrices, 

the problem can be solved only once with the present approach. 

Again, unlike the foregoing MLS-based methods [26–31] which is 

based on introducing MLS-based meshless shape functions con- 

structed elaborately into BIEs and is ‘truly meshless’ but still in- 

volves the calculation of boundary integrals, the present ASM only 

requires boundary nodes for computation without involving any el- 

ement or integration notion. Consequently, the ASM is easier-to- 

implement, much more computationally efficient, and theoretically 

simpler. Furthermore, in the implementation of the ASM, the real 

geometry of the domain boundary without approximation can be 

employed for computation as long as the parametric representa- 

tion of the domain boundary is given. 

As usual, the ASM also requires the discretization of the do- 

main boundary into cells, but as stated in Ref. [28] , the using of the 

cells should not be viewed as a shortcoming of meshless/meshfree 

schemes if these cells can be generated with ease. Actually, the 

cells in the ASM are essentially distinguished from the boundary 

elements in BEM and are employed neither for the purpose of in- 

terpolation of the primary variables nor for numerical integration 

just for computing the Jacobian value at nodes, and also there is 

no limitation on their shape and size, implying that when some 

of them are partitioned into smaller cells, their adjacent ones are 

not affected. In this sense, the ASM should be regarded as a “truly 

meshless or meshfree” method. 

The accuracy, stability, efficiency and widely practical applica- 

bility are verified in numerical experiments of the Dirichlet and 

mixed-type continue or discontinue boundary conditions (BCs) of 

both interior and exterior problems with simple and complicated 

boundaries. 

2. Regularized BIEs and the ASM 

In this paper, we always assume that � is a bounded domain 

in R 2 , �c its open complement, and � their common boundary. 

2.1. Boundary value problem 

Consider a two-dimensional potential problem in the domain 

ˆ �

( ̂  � = � or �c ) governed by the Laplace equation 

∇ 

2 u ( x ) = 0 , x = ( x 1 , x 2 ) ∈ 

ˆ � (1) 

with boundary conditions (BCs) [1–2,5–7] 

u ( x ) = ū ( x ) , x ∈ �1 (2) 

q ( x ) = 

∂u ( x ) 

∂ n ( x ) 
= q̄ ( x ) , x ∈ �2 (3) 

when 

ˆ � = �c , in order to guarantee the uniqueness of solution 

of the exterior problems, the following infinity condition must be 

supplemented [7,33] 

| u ( x ) | = O (1) , as ρ = 

√ 

x 2 
1 

+ x 2 
2 

→ ∞ (4) 

where � = �1 ∪ �2 is the boundary of ˆ � with �1 ∩ �2 = ∅ ; ū ( x ) 

and q̄ ( x ) are the prescribed boundary functions and n ( x ) is the unit 

outward normal vector at point x = ( x 1 , x 2 ) ∈ �. 

2.2. Regularized indirect boundary integral equations (IBIEs) 

For potential problems in the domain 

ˆ � ( = � or �c ) bounded 

by boundary �, in the absence of body source, the equivalent reg- 

ularized IBIEs for the problems ( 1 )–( 4 ) can be expressed as [7,33] ∫ 
�
φ( x ) d� = 0 (5) 

u ( y ) = 

∫ 
�
φ( x ) u 

∗( x , y ) d� + C , y ∈ � (6) 

∂u ( y ) 

∂ n y 
= 

ˆ k φ( y ) + 

∫ 
�

[ φ( x ) − φ( y )] 
∂ u 

∗( x , y ) 
∂ n y 

d�

+ φ( y ) 

∫ 
�

[
∂ u 

∗( x , y ) 
∂ n y 

+ 

∂ u 

∗( x , y ) 
∂ n x 

]
d�, y ∈ � (7) 

∂u ( y ) 

∂ t y 
= 

∫ 
�

[ φ( x ) − φ( y )] 
∂ u 

∗( x , y ) 
∂ t y 

d�

+ φ( y ) 

∫ 
�

[
∂ u 

∗( x , y ) 
∂ t y 

+ 

∂ u 

∗( x , y ) 
∂ t x 

]
d�, y ∈ � (8) 

For the internal point y ∈ 

ˆ �, the integral equations can be writ- 

ten as 

u ( y ) = 

∫ 
�
φ( x ) u 

∗( x , y ) d� + C, y ∈ 

ˆ � (9) 

∂u ( y ) 

∂ y k 
= 

∫ 
�
φ( x ) 

∂ u 

∗( x , y ) 
∂ y k 

d�, y ∈ 

ˆ �, k = 1 , 2 (10) 

In Eqs. (5) –( 10 ), x = ( x 1 , x 2 ) and y = ( y 1 , y 2 ) are the source 

and the field points, respectively; t y = ( t 1 ( y ) , t 2 ( y )) and n y = 

( n 1 ( y ) , n 2 ( y )) are the unit tangent and outward normal vectors at 

y ∈ � = ∂ ˆ �; ˆ k is 1 or 0, respectively, for the interior domain � and 

the exterior domain �c ; u ∗( x , y ) denotes the fundamental solution 

for potential problems expressed as 

u 

∗( x , y ) = − 1 

2 π
ln | x − y | (11) 

In order to sidestep the direct computation of the weak singular 

integral in Eq.(6), based on the following integral identities ∫ 
�

n i ( x ) u 

∗( x , y ) d� = 

∫ 
�

( x i − y i ) 
∂ u 

∗( x , y ) 
∂ n 

d�, y ∈ 

ˆ �, i = 1 , · · · , d 

(12) 

which is readily derived by the Green’ second identity, and a limit 

procedure, i.e. 

Lemma [33–35] . Let � be a piecewise smooth curve (open or closed), 

and ˆ x a point on � (perhaps a corner). Suppose h = | y − ˆ x | and d = 

inf 
x ∈ �

| y − x | . If ψ( x ) ∈ C 0, α( �) and h / d ≤ K 1 (with constant K 1 ), then 

there holds 

lim 

y → ̂ x 

∫ 
�

x k − y k 

| x − y | 2 [ ψ( x ) − ψ( ̂  x )] d �x 

= 

∫ 
�

x k − ˆ x k ∣∣x − ˆ x 
∣∣2 

[ ψ( x ) − ψ( ̂  x )] d �x (k = 1 , 2) 

we develop a new boundary element formulation as follows 

u ( y ) = 

∫ 
�

[ φ( x ) − φ( y ) n ( y ) · n ( x ) ] u 

∗( x , y ) d�

+ φ( y ) 

∫ 
�

n ( y ) · ( x − y ) 
∂ u 

∗( x , y ) 
∂ n x 

d� + C, y ∈ � (13) 

which is named the ‘completely’ regularized boundary integral equa- 

tion, because it excludes the computation of both the weakly and 

strongly singular integrals. 
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