
Advances in Engineering Software 100 (2016) 53–71

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

State of the practice for mesh generation and mesh processing

software

W. Spencer Smith

∗, D. Adam Lazzarato, Jacques Carette

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

a r t i c l e i n f o

Article history:

Received 24 October 2015

Revised 2 May 2016

Accepted 12 June 2016

Keywords:

Mesh generation

Scientific computing

Software engineering

Software quality

Analytic hierarchy process

a b s t r a c t

We analyze the state of development practices for Mesh Generation and Mesh Processing (MGMP) soft-

ware by comparing 27 MGMP projects. The analysis employs a reproducible method based on a grading

template of 56 questions covering 13 software qualities. The software is ranked using the Analytic Hier-

archy Process (AHP), a multicriteria decision making method appropriate for cases with a mix of qualita-

tive and quantitative factors. The results reveal concerns regarding the maintainability, usability, reusabil-

ity and performance of some MGMP software. Five recommendations are presented as feedback to the

MGMP community: (i) Use an issue tracker for bug management and support requests. (ii) Document per-

formance measures. (iii) Increase the use of libraries to promote software re-use to avoid “re-inventing

the wheel.” (iv) Improve reproducibility by recording the set up details for the development and testing

environments. (v) Improve confidence in correctness through requirements specification, formal specifi-

cation languages, and automated testing.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper analyzes the state of development practice for Mesh

Generation and Mesh Processing (MGMP) software. MGMP is used

to discretize a given geometric domain into a mesh consisting of a

set of smaller simpler shapes, such as triangles, quadrilaterals, or

tetrahedrals. Meshes are used in such areas as finite element com-

putations and computational graphics. The data structures and al-

gorithms for MGMP can get complicated. The complexity of MGMP

software raises concerns regarding correctness, reliability and per-

formance. Moreover, the utility and importance of MGMP justifies

concerns about the maintainability and reusability of this software.

To address these concerns requires systematic and rigorous soft-

ware development practices.

In the analysis that follows, we have aimed to be objective. Al-

though two of the authors of this paper have some experience in

the domain of mesh generation and processing, MGMP is not their

primary research area, and they are not part of the MGMP com-

munity. Instead, we consider ourselves as experts in Software En-

gineering (SE) applied to Scientific Computation (SC) software. We

have no prior attachment to any of the software examined in this

paper. To keep the evaluations fair, the sole source of the informa-

∗ Corresponding author.

E-mail address: smiths@mcmaster.ca (W. Spencer Smith).

tion for each product is what is available in the product itself as

well as what is obtainable from searching the Internet.

We evaluated 27 products using a grading template based on 13

different criteria (called “qualities” in the software engineering lit-

erature). Given our role as outsiders to the MGMP community, and

to keep the focus on software engineering issues, the software is

not graded based on functionality. (An older review of MGMP soft-

ware based on functionality can be found in [37] .) We graded the

available software artifacts and the development processes against

standard SE principles and practices. To select the software for

grading, we used a list produced by a domain expert, as discussed

in Section 3.1 . The grading consists of pairwise comparisons be-

tween each of the software products using a multicriteria decision

analysis process. The rankings from the decision analysis were then

used to find trends between the software products.

The methods we used are an expanded and refined version of

those presented by Gewaltig and Cannon [19,20] for computational

neuroscience. In their work, Gewaltig and Cannon frequently found

a gap between developers and users, with respect to their expec-

tations for software quality. We looked at what kind of quality

gap exists within the MGMP domain. The gap in computational

neuroscience, where the majority of software is created by pro-

fessional end user developers [51] , may be due to the developers

emphasis on their science, instead of on software development

best practices.

In general, software developers who write scientific computa-

tion software do not follow the practices advocated by software

http://dx.doi.org/10.1016/j.advengsoft.2016.06.008

0965-9978/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.advengsoft.2016.06.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.06.008&domain=pdf
mailto:smiths@mcmaster.ca
http://dx.doi.org/10.1016/j.advengsoft.2016.06.008

54 W. Spencer Smith et al. / Advances in Engineering Software 100 (2016) 53–71

engineers [28,29,64] . As observed by Segal [52] , “there is no dis-

crete phase of requirements gathering or of software evaluation.

Testing is of the cursory nature which would enrage a software

engineer.” Segals description is reinforced by a survey of approxi-

mately 160 SC developers [61] , which showed that only 12% of de-

velopment time is devoted to requirements specification and that

only 10% of SC developers employ formal specification techniques.

Not only are SE methods not used in SC, they are often per-

ceived as not useful. For instance, for SC software, Roache [43 ,

p. 373] considers as counterproductive the writing of documenta-

tion at each stage of software development, although this is often

advocated in SE. As the field studies of Segal [52] show, interaction

between SE and SC can be problematic because each side fails to

meet the expectations of the other. For instance, communication

between SC developers and SE practitioners is challenging when it

comes to requirements. A communication barrier exists as the sci-

entists cannot precisely convey how the requirements will evolve.

Not correctly articulating requirements, or changing requirements

midway through a project, greatly impacts the productivity of the

development team [50] . When engineers create software, the re-

sulting development artifacts, such as user manuals and introduc-

tory examples, are not sufficient for the scientists to understand

the product [53] . When end users (scientists) develop the software

product, the situation is not better, since their training in science

has not prepared them to consider important software qualities. In

this paper we evaluate the current use of SE techniques and tools

in MGMP. Moreover, for any recommendations that are made, we

aim to make them useful by considering the needs of SC practi-

tioners.

This paper has been written as part of a larger project analyz-

ing the state of practice in multiple SC domains. Throughout this

paper, some results for MGMP software will be contrasted with the

results from the Remote Sensing (RS) domain [32] . RS and MGMP

software are not obviously related based on their purpose, but they

are similar in that each community produces SC software to solve

problems. Since these two scientific domains are subject to the

same gradings, contrasting the results gives a basic sense of the

differences in practices between domains. Other domains that have

been analyzed using the methods shown in this paper include psy-

chometrics software [58] and oceanography software [57] .

The remainder of this article is organized as follows:

Section 2 provides some background information and mentions

previous work. Our method is explained in Section 3 . A summary

of our results is presented in Section 4 and our recommenda-

tions are detailed in Section 5 . Concluding thoughts are found in

Section 6 .

2. Background

Our grading template is based on 13 software qualities, which

are summarized below, followed by an overview of the Analytic

Hierarchy Process (AHP).

2.1. Software qualities

Our analysis is centered around a set of what software engi-

neers call software qualities . These qualities highlight the desirable

nonfunctional properties for software artifacts, which include both

documentation and code. Some qualities, such as visibility, apply

to the process used for developing the software. The following list

of qualities is based on Ghezzi et al. [21] , with the terms defined

in the same order as in the source document. Excluded from this

list are qualities that cannot be measured within the scope of the

current study, such as productivity and timeliness. To the list from

Ghezzi et al. [21] , we have added two qualities important for SC:

installability and reproducibility.

Installability A measure of the ease of installation.

Correctness and verifiability 1 Software is correct if the speci-

fication is perfectly adhered to. Software is not correct if it

deviates from the specification. Verifiability is the ease with

which properties of the software can be ascertained.

Reliability The probability that the software will meet its re-

quirements under a given usage profile.

Robustness A measure of whether the software behaves “grace-

fully” during unexpected situations, such as when invalid

data is input.

Performance A measure of the storage necessary and time re-

quired for the software to solve large problems.

Usability A measure of user-friendliness.

Maintainability The effort necessary to find and repair errors

and to add features to an operational program.

Reusability The ease with which one program can be used to

create another.

Portability The effort needed to run the software in a new en-

vironment.

Understandability The ease with which a programmer can un-

derstand the code.

Interoperability A measure of how smoothly a software prod-

uct can work with external products or systems.

Visibility The ease of determining the current status of a

project’s development.

Reproducibility The ease of recreating software results in the

future. SC code results should meet the scientific method re-

quirement of repeatability. Scientific code must be robust to

changing implementation details [12] .

The above software qualities come from SE; they apply to any

class of software. Wilson et al. [63] instead focus on issues spe-

cific to SC software. They provide a list of eight best practices for

developers of SC software. Ideas from this list were used in the

creation of our grading template. For instance, part of our measure

for maintainability is looking for utilization of an issue tracker, as

advocated by Wilson et al. [63] .

2.2. Analytic hierarchy process

The objective of the Analytic Hierarchy Process (AHP) is deci-

sion making when comparing multiple options based on multiple

criteria [47] . In the current work, AHP is used for comparing

software products based on each of the identified qualities. AHP

works well for this, since it focuses on relative comparisons, rather

than requiring an unattainable unified scale for measuring quality.

AHP starts with sets of n options and m criteria . In our project

there are 27 software products (n = 27) and 13 criteria (m = 13).

Selection of a specific software product requires prioritizing the

criteria, but we do not emphasize this, since priorities are project

specific. Instead, we focus on the next step in the AHP, which

will give us a ranking of the software options for each criterion

(quality). In this step, for each of the criterion, a pairwise analysis

is performed between each of the options, in the form of an n x n

matrix a . The value of a jk ranges from 1, when options j and k are

equally successful at achieving the criterion, to 9, when option j is

extremely (maximally) more successful at achieving the criterion

than option k . Saaty [47] shows the interpretation of the other

values, between 1 and 9.

In our work, a k j = 1 /a jk . Matrix a is then used to create ma-

trix b , where b jk = a jk /
∑

(a ·k) . The dot notation (·) stands for the

entire row. The entries in b are then averaged to determine the

overall score for each option for the given criterion. This informa-

tion can be combined with the priorities to select an option, or the

1 [21] separates these two, but external evidence for these are the same, so we

have joined them here.

Download English Version:

https://daneshyari.com/en/article/567067

Download Persian Version:

https://daneshyari.com/article/567067

Daneshyari.com

https://daneshyari.com/en/article/567067
https://daneshyari.com/article/567067
https://daneshyari.com

