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a b s t r a c t 

The Audze–Egl ̄ajs (AE) criterion was developed to achieve a uniform distribution of experimental points 

in a hypercube. However, the paper shows that the AE criterion provides strongly nonuniform designs 

due to the effect of the boundaries of the hypercube. We propose a simple remedy that lies in the as- 

sumption of periodic boundary conditions. The biased behavior of the original AE criterion and excellent 

performance of the modified criterion are demonstrated using simple numerical examples focused on (i) 

the uniformity of sampling density over the design space and, (ii) statistical sampling efficiency measured 

through the ability to correctly estimate the statistical parameters of functions of random variables. An 

engineering example of reliability calculation is presented, too. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

This article considers the choice of an experimental design for 

computer experiments. The choice of experimental points is an im- 

portant issue in planning an efficient computer experiment. The 

methods used for formulating the plan of experimental points are 

collectively known as Design of Experiments (DoE). DoE is a cru- 

cial process in many engineering tasks. Its purpose is to provide 

a set of N sim 

points (a sample) lying inside a chosen design domain 

that are optimally distributed; the optimality of the experimental 

points depends on the nature of the problem. Various authors have 

suggested intuitive goals for good designs, including “good cover- 

age”, the ability to fit complex models, many levels for each fac- 

tor, and good projection properties. At the same time, a number of 

different mathematical criteria have been put forth for comparing 

designs. 

There are two main application areas for DoE methods in the 

area of computer experiments. First, DoE is often used for evaluat- 

ing the effects of different parameters of a function while search- 

ing for a response surface. The choice of location for the evalua- 

tion points or plan points is important in order to obtain a good 

approximation of the response surface. A surrogate model that ap- 

proximates the original, complex, model, can be e.g. a response 

surface [32] , a support vector regression or a neural network [25] . 
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The surrogate model is based on a set of carefully selected points 

in the domain of variables. The process of finding optimal exper- 

imental points might be performed adaptively, i.e. in several se- 

quential steps, where the location of the additional points in every 

step are based on result achieved so far [49] . 

Second, the selection of the sampling points is even more im- 

portant when evaluating approximations to integrals as is per- 

formed in Monte Carlo simulations (numerical integration), where 

equal sampling probabilities inside the design domain are required. 

These integrals may, for example, represent variables being esti- 

mated in uncertainty analyses. The evaluation of the uncertainty 

associated with analysis outcomes is now widely recognized as an 

important part of any modeling effort. A number of approaches to 

such evaluation are in use, including neural networks [6] , variance 

decomposition procedures [27,42] , and Monte Carlo (i.e. sampling- 

based) procedures [16,46] . 

In both applications mentioned above, it is convenient when 

the probability that the i th experimental point is located inside 

some chosen subset of the domain equals to V S / V D , with V S be- 

ing the subset volume and V D the volume of the whole domain 

(for unconstrained design V D = 1 ). Whenever this is valid, the de- 

sign criterion will be called uniform . Even though such uniformity 

is conceptually simple and intuitive on a qualitative level, it is 

somewhat complicated to describe and characterize it mathemati- 

cally. Although some problems do not require this uniformity, it is 

the crucial assumption in Monte-Carlo integration and its violation 

may (as will be demonstrated below) lead to significant errors. 
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The process of finding the experimental points can be under- 

stood as an optimization problem: we are searching for a design 

that minimizes an objective function, E . After an initial set of ex- 

perimental points have been generated (typically via a pseudo- 

random generator), some modifications of them are performed in 

sequential steps to find the minimum of the objective function. 

Several optimization algorithms can be utilized; simulated anneal- 

ing [57] will be employed in this paper. The chosen optimization 

algorithms may strongly affect the number of optimization steps 

and therefore the time to achieve the minimum, as well as the 

ability to find the global minimum among many extremes (local 

minima). However, the quality of the design is controlled by a cho- 

sen objective function (or design criterion). 

Several criteria (objective functions) have been developed and 

used [21] , e.g. the Audze-Egl ̄ajs (AE) criterion [1] , the Euclidean 

MaxiMin and MiniMax distance between points [22] , Modified 

L2 discrepancy [8] , Wrap-Around L 2 -Discrepancy [7] , Centered L 2 - 

discrepancy [9] , the D −optimality criterion [50] , criteria based on 

correlation (orthogonality) [54,55,57] , Voronoi tessellation [45] , the 

φ criterion introduced in [31] , dynamic modeling of an expanding 

lattice, designs maximizing entropy [48] , integrated mean-squared 

error [47] , and many others. Some authors believe that in order to 

obtain a versatile (robust) design, several criteria should be used 

simultaneously [13] . 

It should be also noted that an experimental design can be also 

obtained via so-called “quasi-random” low-discrepancy sequences 

(deterministic versions of MC analysis) that can often achieve rea- 

sonably uniform point placement in hypercubes. One such exam- 

ple is the Niederreiter sequence [37] . Actually, fairly uniform point 

distributions can be produced by Halton [15] and Sobol’ [51] se- 

quences despite the flexibility of sample size selection: the points 

are added one-at-a-time to the design space. For resolving re- 

sponse probabilities, the Hammersley and modified-Halton meth- 

ods were found in [44] using several test problems to perform only 

slightly better than Latin Hypercube Sampling. However, when the 

hyperspace dimension N var becomes moderate to large and/or N sim 

becomes high, usually these sequences suffer from spurious sam- 

ple correlation [10,19] . These deterministic techniques are not fur- 

ther exploited in the paper. 

Several authors have proposed a combination of uniformity cri- 

teria with Latin Hypercube Sampling (LHS) [5,20,30] as a represen- 

tative of variance reduction techniques (these designs are some- 

times named optimal LHS). Tang [53] has introduced orthogonal- 

array-based Latin hypercubes to improve projections on higher di- 

mensional subspaces, the space-filling properties of which were 

supposedly improved in [26] by using the Audze-Egl ̄ajs criterion 

(without explicitly citing [1] ). LHS is a type of stratified sampling 

technique; the coordinates of N sim 

experimental points (simula- 

tions) are sampled from N sim 

equidistant subintervals of length 

1/ N sim 

so that every subinterval contains one and only one point. 

LHS guarantees the uniform distribution of experimental points 

along each dimension where it is used, typically along all N var di- 

mensions. The frequently used version of LHS limits the selection 

of coordinates along each variable to fixed set of values, most often 

the centers of the intervals (called LHS-median in [57] ) with coor- 

dinates (i − 0 . 5) / N sim 

for i ∈ 〈 1 , 2 , . . . , N sim 

〉 . Such a type of LHS 

will be used in this paper. When optimizing an existing LH sam- 

ple, discrete domain consisting of interval centers is prescribed for 

each variable, so the remaining task is to perform pairing (chang- 

ing mutual orderings = shuffling) in order to minimize the DoE 

criterion. 

The design of experiments is typically performed in a hyper- 

cubical domain of N var dimensions, where each dimension/variable, 

U v , ranges between zero and one ( v = 1 , . . . , N var ). Sometimes, ad- 

ditional constraints are required and the design of experiments is 

performed in a constrained domain and becomes more compli- 

cated [33,41] . In this paper, the design domain is a classical N var - 

dimensional unit hypercube. This design domain is to be covered 

by N sim 

points as evenly as possible. 

This paper is focused on the performance of the widely used 

Audze-Egl ̄ajs (AE) criterion and its improvement. It is shown that 

the original AE criterion provides designs that are not uniform . The 

appendix provides a simple explanation for this bias that arises 

from the presence of hypercube boundaries. Therefore, a remedy 

leading to uniform designs that involve the assumption of period- 

icity is introduced. The remedy does not increase computational 

complexity and is extremely easy to implement in source codes 

that already contain an evaluation of the original AE criterion. 

Three simple numerical examples are performed to show that (i) 

the sampling bias in the original AE criterion leads to errors in the 

estimation of moments of statistical models and (ii) the improved 

periodic criterion provides correct values with low variance. Fi- 

nally, a finite element model with a nonlinear constitutive law for 

concrete beam loaded in bending, featuring four random variables, 

shows the bias in calculation of probability of failure when the 

original AE criterion is used. 

2. Review of the original AE criterion 

The AE criterion was developed by Audze and Egl ̄ajs [1] . The 

authors claimed that the criterion may be understood to express 

the potential energy of a system of particles with repulsive forces 

between each pair of them; minimization of this potential en- 

ergy optimizes the spatial arrangement of the points. The repul- 

sive forces between pairs of points are functions of their dis- 

tance. The Euclidean distance, L ij , between points (realizations) 

u i = 

(
u i, 1 , u i, 2 , . . . , u i, N var 

)
and u j in N var -dimensional space can be 

expressed as a function of their coordinates 

L i j = L 
(
u i , u j 

)
= 

√ 

N var ∑ 

v =1 

(
u i, v − u j, v 

)2 = 

√ 

N var ∑ 

v =1 

(
�i j, v 

)2 
(1) 

where 

�i j, v = | u i, v − u j, v | (2) 

is the distance between two points measured along (or projected 

onto) axis/dimension v (difference in variable U v ); | X | stands for 

the absolute value of X . Each variable U v ranges between zero and 

one, therefore �ij, v has the same limits: �ij, v ∈ 〈 0, 1 〉 . The Audze- 

Egl ̄ajs criterion is defined using the squared Euclidean distances 

between all pairs of experimental points as 

E AE = 

N sim ∑ 

i =1 

N sim ∑ 

j= i +1 

1 

L 2 
i j 

(3) 

Several authors claim that the force interactions mimic gravita- 

tional forces. For example, Bates et al. [3] claim that “if the mag- 

nitude of the repulsive forces is inversely proportional to the dis- 

tance squared between the points” then Eq. (3) represents poten- 

tial energy. Similar statements are to be found in [11,18,58,59] . In 

[24] , the authors, in contrast, claim that the AE criterion “is equal 

to the minimum of potential energy of repulsive forces for the 

points with unity mass if the magnitude of these repulsive forces 

is inversely proportional to the distance between the points”. We 

disagree with both these explanations. If the criterion quantifies 

the potential energy of a system of particles, the repulsive force 

between pairs of particles must be equal to the negative derivative 

of the contact potential energy with respect to distance 

F i j = −
d E AE 

i j 

d L i j 

= −
d 

1 
L 2 

i j 

d L i j 

= 

2 

L 3 
i j 

(4) 
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