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a b s t r a c t 

This paper presents a new regularized boundary integral equation (BIE) method for three-dimensional 

(3D) potential gradient field. For this method, we firstly construct two special tangential vectors, and 

then provide a characteristics theorem with respect to the contour integrations of normal and tangential 

gradients of the fundamental solution. Finally, a new regularized boundary integral equation with indi- 

rect unknowns is derived by using the characteristics theorem and a limit theorem. Compared with the 

direct boundary element method (BEM), the proposed method has three new features: (1) the continuity 

requirements of density functions are reduced from C 1 ,α to C 0 ,α; (2) the BIE does not involve the hy- 

persingular (HFP) integral and thus its numerical evaluation is more easy and precise; (3) any potential 

gradients on the boundary, not limited to normal gradients, can now be calculated. Numerical results il- 

lustrate that the present method is computationally efficient, accurate, and convergent with an increasing 

number of boundary elements. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The boundary element method (BEM) has been developed to be 

a powerful numerical method for solving the potential problems 

[1–4] . The method reduces the dimensionality of numerical prob- 

lems by one via an integral transformation of differential equa- 

tions. However, there exist singularities in the boundary integral 

equations (BIEs) due to the singular fundamental solution. There- 

fore, the key of the BEM is how to efficiently deal with the singular 

integrals [5,6] . 

Many research efforts have so far been devoted to the accurate 

and efficient evaluation of singular integrals in the BIEs, and 

numerous numerical techniques were developed. These methods 

can be generally divided into two categories: the local strategies 

[7–20] , and the global strategies [21–30] . The former ones include, 

but are not limited to, analytical and semi-analytical techniques 

[7,8] , new Gaussian quadrature method [9,10] , the local regular- 

ization method [11–15] , transformation method [16,17] , finite-part 

integral [18,19] , and subtraction technique [20] , etc. Among 

these methods, the local regularization technique proposed by 
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Guiggiani et al. [11,12] can be used to handle various orders of 

singularities. For this technique, every quantity in singular inte- 

grals has to be extended as Taylor’s series about the local distance, 

which is complex mathematically and not easy to program. Gao 

[14,15] presented another technique to regularize the singular 

integrals, in which the singular boundary element is broken up 

into a few sub-elements. The sub-elements involving the singular 

point are evaluated analytically to remove the singularities by 

expressing the non-singular parts of the integration kernels as 

polynomials of the distance r . The latter ones indirectly calculate 

the singular integrals by developing new regularized BIEs, such 

as the virtual BEM [21,22] , the null field method [23,24] , the 

simple solution method [25,26] , and the regularization methods 

developed by Zhang et al. [27–30] . 

In the past, most of researchers focused on regularized BIEs 

with direct variables. Unlike the direct methods, Zhang [27] was 

the first who derived an indirect regularized BIE that was not 

found in previous BEM literature according to the author best 

knowledge. Recently, the developed regularized method [27] was 

extended to solving the two-dimensional (2D) anisotropic poten- 

tial [28] and orthotropic elastic problems [29] . Compared with the 

direct BEM, the indirect regularized BIEs have the following advan- 

tages. First, the continuity requirement of density functions is re- 

duced. In order to remove the singularities, the regularized form 
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of the hypersingular (HFP) integral in the direct BEM can be ex- 

pressed as 

∫ 
�

(u (x ) − u (y ) − u k (x )( x k − y k )) O 

(
1 

r 2 

)
d �x , k = 1 , 2 . 

The existence of this integral in the Riemann sense requires that 

the density function u (x ) belongs to C 1 ,α [31] . However, the exis- 

tence of the following regularized integral in Ref. [27] only needs 

that the density function u (x ) belongs to C 0 ,α

∫ 
�

(u (x ) − u (y )) O 

(
1 

r 

)
d �x , k = 1 , 2 . 

Second, the BIE does not involve the hypersingular (HFP) inte- 

gral and thus its numerical evaluation is more easy and precise. 

Finally, any potential gradients on the boundary, not limited to the 

normal gradients, can now be calculated by using the indirect reg- 

ularized method. In addition, the Galerkin boundary node method 

(GBNM) [32–34] was developed by combining the moving least- 

squares approximation and the indirect BIEs. Thus, the new regu- 

larized technique for the indirect BIEs will promote the develop- 

ment of the GBNM. 

It is not an easy work to extend the approach in Ref. [27] 

for three-dimensional (3D) problems. For plane problems, there is 

only a unit tangent vector along the boundary curve, and the con- 

tour integrations of tangential gradients about relative quantities 

are equal to zero. Furthermore, the contour integration of normal 

gradient can be transformed to that of the tangential gradient by 

using the relationship n 1 = t 2 , n 2 = −t 1 of the unit tangent vector 

t ( t 1 , t 2 ) and gradient vector n ( n 1 , n 2 ) . For 3D problems, however, 

the unit tangent vector is any vector involved in the tangent plane, 

and the contour integration of any tangential gradient about rel- 

ative quantities is usually unequal to zero. The contour integra- 

tion of the normal gradient is also not connected with that of the 

tangential gradient because of no relationship between the unit 

tangent vector t ( t 1 , t 2 , t 3 ) and gradient vector n ( n 1 , n 2 , n 3 ) except 

n · t = 0 . For these reasons, we were unable to extend the approach 

in Ref. [27] for 3D problems until now. 

In this paper, we present a new indirect regularized BIE for the 

3D potential gradient field. Two special tangential vectors are con- 

structed. Then, a characteristics theorem about the contour inte- 

grations of normal and tangential gradients of the fundamental so- 

lution is provided. Based on the characteristics theorem and a limit 

theorem, we finally develop a new regularized BIE with indirect 

unknowns. Numerical results demonstrate the accuracy and effi- 

ciency of the proposed method. A brief outline of the paper is as 

follows. Section 2 presents four theorems. In Section 3 , we estab- 

lish the regularized BIE based on these theorems. In Section 4 , the 

details of boundary elements are given. Section 5 provides numer- 

ical examples. In Section 6 , we conclude the paper. 

2. Basic theorems 

In this paper, we always assume that � is a bounded do- 

main in R 3 , � = ∂� and �c = R 3 − (� ∪ �) . n (x ) = ( n 1 , n 2 , n 3 ) 

is an outward unit normal vector of � at a boundary 

point x . m 

1 (x ) = ( n 2 + k n 3 , −n 1 , −k n 1 ) and m 

2 (x ) = ( n 2 , −n 1 + 

n 3 /k, −n 2 /k ) (k is a parameter , and k � = 0) belong to the tangent 

plane of � at the point x . Here, m 

1 (x ) and m 

2 (x ) are constructed 

to compose a linearly independent set with n (x ) . Then, the poten- 

tial gradient in any direction can be expressed as a linear combi- 

nation of the normal and two tangential gradients. Finally, we can 

regularize the BIE of potential gradient by using a characteristics 

theorem about the contour integrations of normal and tangential 

gradients of the fundamental solution. 

The fundamental solution G of 3D potential problem [35] can 

be expressed as 

G (x , y ) = 

1 

4 π r(x , y ) 
(1) 

where x = ( x 1 , x 2 , x 3 ) , y = ( y 1 , y 2 , y 3 ) are the field and source 

points, respectively. r( x, y ) is the distance between the source 

and field points. The fundamental solution ( 1 ) has an identity as 

follows: 

∫ 
�

∂G (x , y ) 

∂n (x ) 
d� = 

{
−1 , y ∈ �
0 , y ∈ �c 

(2) 

The proof of this identity can be found in Refs. [36,37] . To 

derive a new regularized BIE with indirect unknowns, we also 

present some new identities. 

Theorem 1. Let k satisfies the following two conditions: 

(1) If n 1 � = 0 and n 2 
3 

+ 4 n 1 n 2 ≥ 0 , then k � = 

n 3 ±
√ 

n 2 
3 
+4 n 1 n 2 

2 n 1 
; 

(2) If n 1 = 0 , n 3 � = 0 , then k � = −n 2 / n 3 . 

Then, ( m 

1 , m 

2 , n ) is a linearly independent set. 

Proof. Assume m 

1 , m 

2 , n are linearly dependent, we will hold 

D = 

∣∣∣∣∣
n 2 + k n 3 n 2 n 1 

−n 1 −n 1 + 

1 
k 

n 3 n 2 

−k n 1 − 1 
k 

n 2 n 3 

∣∣∣∣∣ = −k n 1 + 

1 

k 
n 2 + n 3 = 0 (3) 

Eq. (3) can be transformed as 

n 1 k 
2 − n 3 k − n 2 = 0 (4) 

As n 1 � = 0 , the above equation has a solution k = 

n 3 ±
√ 

n 2 
3 
+4 n 1 n 2 

2 n 1 

if and only if n 2 
3 

+ 4 n 1 n 2 ≥ 0 , and conversely, it has no solution. As 

n 1 = 0 , Eq. (4) can be expressed as 

n 3 k + n 2 = 0 (5) 

If n 3 � = 0 , Eq. (5) has solution k = −n 2 / n 3 . As n 3 = 0 , there is 

no solution due to n 2 
1 

+ n 2 
2 

+ n 2 
3 

= 1 . Therefore, the assumption is 

false. �

Theorem 2. Let S be a piecewise smooth surface, and g(x ) be a deriv- 

able function on S. If ( m 

1 , m 

2 , n ) is a linearly independent set, then 

there holds 

∇g(x ) = a (x ) ∇g(x ) · m 

1 + b (x ) ∇g(x ) · m 

2 + c (x ) ∇g(x ) · n (6) 

where ∇ = ( ∂ 
∂ x 1 

, ∂ 
∂ x 2 

, ∂ 
∂ x 3 

) , and a i (x ) , b i (x ) , c i (x ) (i = 1 , 2 , 3) are 

the components of vectors a (x ) , b (x ) , c (x ) respectively, which can be 

expressed as 

a i (x ) = 

( δi × m 

2 ) · n 

( m 

1 × m 

2 ) · n 

, b i (x ) = 

( m 

1 × δi ) · n 

( m 

1 × m 

2 ) · n 

, 

c i (x ) = 

( m 

1 × m 

2 ) · δi 

( m 

1 × m 

2 ) · n 

, δi = ( δi 1 , δi 2 , δi 3 ) , i = 1 , 2 , 3 (7) 

Proof. According to Eq. (6) , we have 

∂g(x ) 

∂ x i 
= a i (x ) ∇g(x ) · m 

1 + b i (x ) ∇g(x ) · m 

2 + c i (x ) ∇g(x ) · n , 

i = 1 , 2 , 3 (8) 

and then 

δi j = a i (x ) m 

1 
j + b i (x ) m 

2 
j + c i (x ) n j i, j = 1 , 2 , 3 (9) 

where m 

1 
j 
, m 

2 
j 
, n j ( j = 1 , 2 , 3) are the components of vectors 

m 

1 , m 

2 , n . Since ( m 

1 , m 

2 , n ) is a linearly independent set, we 
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